Skip to main content

Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik’s Cube

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11767))

Abstract

Witnessed the development of deep learning, increasing number of studies try to build computer aided diagnosis systems for 3D volumetric medical data. However, as the annotations of 3D medical data are difficult to acquire, the number of annotated 3D medical images is often not enough to well train the deep learning networks. The self-supervised learning deeply exploiting the information of raw data is one of the potential solutions to loose the requirement of training data. In this paper, we propose a self-supervised learning framework for the volumetric medical images. A novel proxy task, i.e., Rubik’s cube recovery, is formulated to pre-train 3D neural networks. The proxy task involves two operations, i.e., cube rearrangement and cube rotation, which enforce networks to learn translational and rotational invariant features from raw 3D data. Compared to the train-from-scratch strategy, fine-tuning from the pre-trained network leads to a better accuracy on various tasks, e.g., brain hemorrhage classification and brain tumor segmentation. We show that our self-supervised learning approach can substantially boost the accuracies of 3D deep learning networks on the volumetric medical datasets without using extra data. To our best knowledge, this is the first work focusing on the self-supervised learning of 3D neural networks.

This work was done when Xinrui Zhuang was an intern at YouTu Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv e-print: arXiv:1704.06857 (2017)

  3. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  4. Khurram, S., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv e-print: arXiv:1212.0402 (2012)

  5. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR, pp. 840–849 (2017)

    Google Scholar 

  6. Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning by sorting sequences. In: ICCV, pp. 667–676 (2017)

    Google Scholar 

  7. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  8. Noroozi, M., Vinjimoor, A., Favaro, P., Pirsiavash, H.: Boosting self-supervised learning via knowledge transfer. In: CVPR, pp. 9359–9367 (2018)

    Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  10. Spitzer, H., Kiwitz, K., Amunts, K., Harmeling, S., Dickscheid, T.: Improving cytoarchitectonic segmentation of human brain areas with self-supervised siamese networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 663–671. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_76

    Chapter  Google Scholar 

  11. Wang, P., et al.: Understanding convolution for semantic segmentation. In: WACV, pp. 1451–1460 (2018)

    Google Scholar 

  12. Zhang, P., Wang, F., Zheng, Y.: Self supervised deep representation learning for fine-grained body part recognition. In: ISBI, pp. 578–582 (2017)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (No. 2018YFB1601102), the Natural Science Foundation of China (No. 61702339), the Key Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), and Shenzhen special fund for the strategic development of emerging industries (No. JCYJ20170412170118573).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuexiang Li or Yujiu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y. (2019). Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik’s Cube. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics