Skip to main content

Unsupervised Domain Adaptation with Contrastive Learning for OCT Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Accurate segmentation of retinal fluids in 3D Optical Coherence Tomography images is key for diagnosis and personalized treatment of eye diseases. While deep learning has been successful at this task, trained supervised models often fail for images that do not resemble labeled examples, e.g. for images acquired using different devices. We hereby propose a novel semi-supervised learning framework for segmentation of volumetric images from new unlabeled domains. We jointly use supervised and contrastive learning, also introducing a contrastive pairing scheme that leverages similarity between nearby slices in 3D. In addition, we propose channel-wise aggregation as an alternative to conventional spatial-pooling aggregation for contrastive feature map projection. We evaluate our methods for domain adaptation from a (labeled) source domain to an (unlabeled) target domain, each containing images acquired with different acquisition devices. In the target domain, our method achieves a Dice coefficient 13.8% higher than SimCLR (a state-of-the-art contrastive framework), and leads to results comparable to an upper bound with supervised training in that domain. In the source domain, our model also improves the results by 5.4% Dice, by successfully leveraging information from many unlabeled images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogunovic, H., Venhuizen, F., Klimscha, S., Apostolopoulos, S., Bab-Hadiashar, A., et al.: RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans. Med. Imaging 38(8), 1858–1874 (2019)

    Article  Google Scholar 

  2. Bolte, J.A., et al.: Unsupervised domain adaptation to improve image segmentation quality both in the source and target domain. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1404–1413 (2019)

    Google Scholar 

  3. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: IEEE International Conference on Computer Vision (ICCV), pp. 9650–9660 (2021)

    Google Scholar 

  4. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 12546–12558 (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607 (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 22243–22255 (2020)

    Google Scholar 

  7. Chen, X., He, K.: Exploring simple siamese representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758 (2021)

    Google Scholar 

  8. Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60

    Chapter  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  10. Fauw, J.D., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  11. Fujimoto, J., Swanson, E.: The development, commercialization, and impact of optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 57(9) (2016)

    Google Scholar 

  12. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning (ICML), pp. 1180–1189 (2015)

    Google Scholar 

  13. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9729–9738 (2020)

    Google Scholar 

  15. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  17. Maunz, A., et al.: Accuracy of a machine-learning algorithm for detecting and classifying choroidal neovascularization on spectral-domain optical coherence tomography. J. Personal. Med. 11(6), 524 (2021)

    Article  Google Scholar 

  18. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  19. Ren, M., Dey, N., Fishbaugh, J., Gerig, G.: Segmentation-renormalized deep feature modulation for unpaired image harmonization. IEEE Trans. Med. Imaging 40(6), 1519–1530 (2021)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sahni, J.N., et al.: A machine learning approach to predict response to anti-VEGF treatment in patients with neovascular age-related macular degeneration using SD-OCT. Invest. Ophthalmol. Vis. Sci. 60(11), PB094–PB094 (2019)

    Google Scholar 

  22. Schlegl, T., et al.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018)

    Article  Google Scholar 

  23. Schmidt-Erfurth, U., Waldstein, S.M.: A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 50, 1–24 (2016)

    Article  Google Scholar 

  24. Seeböck, P., et al.: Using CycleGANs for effectively reducing image variability across OCT devices and improving retinal fluid segmentation. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 605–609 (2019)

    Google Scholar 

  25. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  26. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Gomariz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6961 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomariz, A. et al. (2022). Unsupervised Domain Adaptation with Contrastive Learning for OCT Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics