Skip to main content

USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Most deep neural networks (DNNs) based ultrasound (US) medical image analysis models use pretrained backbones (e.g., ImageNet) for better model generalization. However, the domain gap between natural and medical images causes an inevitable performance bottleneck. To alleviate this problem, an US dataset named US-4 is constructed for direct pretraining on the same domain. It contains over 23,000 images from four US video sub-datasets. To learn robust features from US-4, we propose an US semi-supervised contrastive learning method, named USCL, for pretraining. In order to avoid high similarities between negative pairs as well as mine abundant visual features from limited US videos, USCL adopts a sample pair generation method to enrich the feature involved in a single step of contrastive optimization. Extensive experiments on several downstream tasks show the superiority of USCL pretraining against ImageNet pretraining and other state-of-the-art (SOTA) pretraining approaches. In particular, USCL pretrained backbone achieves fine-tuning accuracy of over 94% on POCUS dataset, which is 10% higher than 84% of the ImageNet pretrained model. The source codes of this work are available at https://github.com/983632847/USCL.

Y. Chen and C. Zhang—Contributed equally. This work was done at Shenzhen Research Institute of Big Data (SRIBD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more details of PPG module, see the Supplementary Material Sect. 2.

References

  1. Butterfly videos. https://www.butterflynetwork.com/index.html. Accessed 20 Sept 2020

  2. Born, J., et al.: Accelerating detection of lung pathologies with explainable ultrasound image analysis. Appl. Sci. 11(2), 672 (2021)

    Article  Google Scholar 

  3. Celebi, M. Emre., Aydin, Kemal (eds.): Unsupervised Learning Algorithms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8

    Book  Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv:2002.05709 (2020)

  5. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv:2003.04297 (2020)

  6. Gao, L., et al.: Multi-modal active learning for automatic liver fibrosis diagnosis based on ultrasound shear wave elastography. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 410–414. IEEE (2021)

    Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE TPAMI 42(2), 386–397 (2020)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  11. Jiao, Jianbo, Cai, Yifan, Alsharid, Mohammad, Drukker, Lior, Papageorghiou, Aris T., Noble, J. Alison.: Self-supervised contrastive video-speech representation learning for ultrasound. In: Martel, Anne L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 534–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_51

    Chapter  Google Scholar 

  12. Ke, A., Ellsworth, W., Banerjee, O., Ng, A.Y., Rajpurkar, P.: Chextransfer: Performance and parameter efficiency of ImageNet models for chest X-ray interpretation. arXiv:2101.06871 (2021)

  13. Kwitt, R., Vasconcelos, N., Razzaque, S., Aylward, S.: Localizing target structures in ultrasound video-a phantom study. Med. Image Anal. 17(7), 712–722 (2013)

    Article  Google Scholar 

  14. Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE TMI 39(12), 4023–4033 (2020)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  16. Lin, Tsung-Yi., et al.: Microsoft COCO: common objects in context. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, L., Lei, W., Wan, X., Liu, L., Luo, Y., Feng, C.: Semi-supervised active learning for Covid-19 lung ultrasound multi-symptom classification. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1268–1273. IEEE (2020)

    Google Scholar 

  18. Liu, T., Zhang, H.J., Qi, F.: A novel video key-frame-extraction algorithm based on perceived motion energy model. IEEE TCSVT 13(10), 1006–1013 (2003)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Samuli, L., Timo, A.: Temporal ensembling for semi-supervised learning. In: International Conference on Learning Representations (ICLR), vol. 4, p. 6 (2017)

    Google Scholar 

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  22. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In: NeurIPS, pp. 1857–1865 (2016)

    Google Scholar 

  23. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. arXiv:2001.07685 (2020)

  24. Somphone, O., Allaire, S., Mory, B., Dufour, C.: Live feature tracking in ultrasound liver sequences with sparse demons. In: MICCAI Workshop, pp. 53–60 (2014)

    Google Scholar 

  25. Vu, Y.N.T., Wang, R., Balachandar, N., Liu, C., Ng, A.Y., Rajpurkar, P.: MedAug: contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation. arXiv:2102.10663 (2021)

  26. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Key-Area Research and Development Program of Guangdong Province (2020B0101350001); the GuangDong Basic and Applied Basic Research Foundation (No. 2020A1515110376); Guangdong Provincial Key Laboratory of Big Data Computation Theories and Methods, The Chinese University of Hong Kong (Shenzhen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 391 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2021). USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics