Skip to main content

TINC: Temporally Informed Non-contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Recent contrastive learning methods achieved state-of-the-art in low label regimes. However, the training requires large batch sizes and heavy augmentations to create multiple views of an image. With non-contrastive methods, the negatives are implicitly incorporated in the loss, allowing different images and modalities as pairs. Although the meta-information (i.e., age, sex) in medical imaging is abundant, the annotations are noisy and prone to class imbalance. In this work, we exploited already existing temporal information (different visits from a patient) in a longitudinal optical coherence tomography (OCT) dataset using temporally informed non-contrastive loss (TINC) without increasing complexity and need for negative pairs. Moreover, our novel pair-forming scheme can avoid heavy augmentations and implicitly incorporates the temporal information in the pairs. Finally, these representations learned from the pretraining are more successful in predicting disease progression where the temporal information is crucial for the downstream task. More specifically, our model outperforms existing models in predicting the risk of conversion within a time frame from intermediate age-related macular degeneration (AMD) to the late wet-AMD stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The other eye that is not part of the interventional study.

  2. 2.

    NCT00891735. https://clinicaltrials.gov/ct2/show/NCT00891735.

References

  1. Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3478–3488 (2021)

    Google Scholar 

  2. Banerjee, I., et al.: Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal sd-oct imaging biomarkers. Sci. Rep. 10(1), 15434 (2020). https://doi.org/10.1038/s41598-020-72359-y

  3. Bardes, A., Ponce, J., LeCun, Y.: VICReg: variance-invariance-covariance regularization for self-supervised learning. In: International Conference on Learning Representations (2022)

    Google Scholar 

  4. Bressler, N.M.: Age-related macular degeneration is the leading cause of blindness. JAMA 291(15), 1900–1901 (2004). https://doi.org/10.1001/jama.291.15.1900

    Article  Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  6. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Chen, Y., et al.: USCL: Pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60

    Chapter  Google Scholar 

  8. Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation learning. In: International Conference on Machine Learning, pp. 3015–3024. PMLR (2021)

    Google Scholar 

  9. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  10. Jing, L., Vincent, P., LeCun, Y., Tian, Y.: Understanding dimensional collapse in contrastive self-supervised learning. In: International Conference on Learning Representations (2022)

    Google Scholar 

  11. Li, H., et al.: Imbalance-aware self-supervised learning for 3D radiomic representations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_4

    Chapter  Google Scholar 

  12. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding (2019)

    Google Scholar 

  13. Rivail, A., et al.: Modeling disease progression in Retinal OCTs with longitudinal self-supervised learning. In: Rekik, I., Adeli, E., Park, S.H. (eds.) PRIME 2019. LNCS, vol. 11843, pp. 44–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32281-6_5

    Chapter  Google Scholar 

  14. Russakoff, D.B., Lamin, A., Oakley, J.D., Dubis, A.M., Sivaprasad, S.: Deep learning for prediction of amd progression: a pilot study. Invest. Ophthalmol. Visual Sci. 60(2), 712–722 (2019)

    Article  Google Scholar 

  15. Schmidt-Erfurth, U., et al.: Prediction of individual disease conversion in early amd using artificial intelligence. Invest. Ophthalmol. Visual Sci. 59(8), 3199–3208 (2018)

    Article  Google Scholar 

  16. Wu, Z., Bogunović, H., Asgari, R., Schmidt-Erfurth, U., Guymer, R.H.: Predicting progression of age-related macular degeneration using oct and fundus photography. Ophthalmol. Retina 5(2), 118–125 (2021). https://doi.org/10.1016/j.oret.2020.06.026

    Article  Google Scholar 

  17. Yan, Q., et al.: Deep-learning-based prediction of late age-related macular degeneration progression. Nat. Mach. intell. 2(2), 141–150 (2020)

    Article  Google Scholar 

  18. Yang, J., et al.: Two-year risk of exudation in eyes with nonexudative age-related macular degeneration and subclinical neovascularization detected with swept source optical coherence tomography angiography. Am. J. Ophthalmol. 208, 1–11 (2019). https://doi.org/10.1016/j.ajo.2019.06.017

  19. Yim, J., et al.: Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26(6), 892–899 (2020)

    Article  Google Scholar 

  20. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  21. Zhang, L., et al.: Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT. Investigative Ophthalmol. Visual Sci. 56(5), 3202–3211 (2015). https://doi.org/10.1167/iovs.14-15669

    Article  Google Scholar 

Download references

Acknowledgements

The work has been partially funded by FWF Austrian Science Fund (FG 9-N), and a Wellcome Trust Collaborative Award (PINNACLE Ref. 210572/Z/18/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha Emre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H. (2022). TINC: Temporally Informed Non-contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics