Skip to main content

Boundary-Enhanced Self-supervised Learning for Brain Structure Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

To alleviate the demand for a large amount of annotated data by deep learning methods, this paper explores self-supervised learning (SSL) for brain structure segmentation. Most SSL methods treat all pixels equally, failing to emphasize the boundaries that are important clues for segmentation. We propose Boundary-Enhanced Self-Supervised Learning (BE-SSL), leveraging supervoxel segmentation and registration as two related proxy tasks. The former task enables capture boundary information by reconstructing distance transform map transformed from supervoxels. The latter task further enhances the boundary with semantics by aligning tissues and organs in registration. Experiments on CANDI and LPBA40 datasets have demonstrated that our method outperforms current SOTA methods by 0.89% and 0.47%, respectively. Our code is available at https://github.com/changfeng3168/BE-SSL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  4. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  5. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  6. Feng, R., Zhou, Z., Gotway, M.B., Liang, J.: Parts2Whole: self-supervised contrastive learning via reconstruction. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 85–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_9

    Chapter  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  8. Jaderberg, M., et al.: Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28, 1–9 (2015)

    Google Scholar 

  9. Jena, R., Singla, S., Batmanghelich, K.: Self-supervised vessel enhancement using flow-based consistencies. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 242–251. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_23

    Chapter  Google Scholar 

  10. Jin, Y., Buntine, W., Petitjean, F., Webb, G.I.: Discriminative, generative and self-supervised approaches for target-agnostic learning. arXiv preprint arXiv:2011.06428 (2020)

  11. Kennedy, D.N., Haselgrove, C., Hodge, S.M., Rane, P.S., Makris, N., Frazier, J.A.: CANDIShare: a resource for pediatric neuroimaging data (2012)

    Google Scholar 

  12. Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)

    Google Scholar 

  13. Shattuck, D.W., et al.: Construction of a 3d probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  14. Taleb, A., et al.: 3d self-supervised methods for medical imaging. Adv. Neural Inf. Process. Syst. 33, 18158–18172 (2020)

    Google Scholar 

  15. Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9162–9171 (2020)

    Google Scholar 

  16. Zhang, L., Wang, M., Liu, M., Zhang, D.: A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 14, 779 (2020)

    Article  Google Scholar 

  17. Zhang, X., Feng, S., Zhou, Y., Zhang, Y., Wang, Y.: SAR: scale-aware restoration learning for 3D tumor segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 124–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_12

    Chapter  Google Scholar 

  18. Zhou, H.Y., Lu, C., Yang, S., Han, X., Yu, Y.: Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3499–3509 (2021)

    Google Scholar 

  19. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

  20. Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y.: self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, F., Wu, C., Wang, Y., Zhang, Y., Chen, X., Tian, Q. (2022). Boundary-Enhanced Self-supervised Learning for Brain Structure Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics