Skip to main content

Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Deep learning has a great potential for estimating biomarkers in diffusion weighted magnetic resonance imaging (dMRI). Atlases, on the other hand, are a unique tool for modeling the spatio-temporal variability of biomarkers. In this paper, we propose the first framework to exploit both deep learning and atlases for biomarker estimation in dMRI. Our framework relies on non-linear diffusion tensor registration to compute biomarker atlases and to estimate atlas reliability maps. We also use non-linear tensor registration to align the atlas to a subject and to estimate the error of this alignment. We use the biomarker atlas, atlas reliability map, and alignment error map, in addition to the dMRI signal, as inputs to a deep learning model for biomarker estimation. We use our framework to estimate fractional anisotropy and neurite orientation dispersion from down-sampled dMRI data on a test cohort of 70 newborn subjects. Results show that our method significantly outperforms standard estimation methods as well as recent deep learning techniques. Our method is also more robust to higher measurement down-sampling factors. Our study shows that the advantages of deep learning and atlases can be synergistically combined to achieve unprecedented biomarker estimation accuracy in dMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, D.C., et al.: Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 32(4), e3841 (2019)

    Article  Google Scholar 

  2. Andica, C., et al.: Neurite orientation dispersion and density imaging reveals white matter microstructural alterations in adults with autism. Mol. Autism 12(1), 1–14 (2021)

    Article  Google Scholar 

  3. Bastiani, M., et al.: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project. Neuroimage 185, 750–763 (2019)

    Article  Google Scholar 

  4. Daducci, A., et al.: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. Neuroimage 105, 32–44 (2015)

    Article  Google Scholar 

  5. Diniz, J.O.B., et al.: Esophagus segmentation from planning CT images using an atlas-based deep learning approach. Comput. Methods Programs Biomed. 197, 105685 (2020)

    Article  Google Scholar 

  6. Dubois, J., et al.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014)

    Article  Google Scholar 

  7. Fick, R.H., et al.: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy. Front. Neuroinform. 13, 64 (2019)

    Google Scholar 

  8. Gibbons, E.K., et al.: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning. Magn. Reson. Med. 81(4), 2399–2411 (2019). https://doi.org/10.1002/mrm.27568

    Article  Google Scholar 

  9. Golkov, V., et al.: q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  10. Hagler, D.J., Jr., et al.: Automated white-matter tractography using a probabilistic diffusion tensor atlas: application to temporal lobe epilepsy. Hum. Brain Mapp. 30(5), 1535–1547 (2009)

    Article  Google Scholar 

  11. Harms, R.L., et al.: Robust and fast nonlinear optimization of diffusion MRI microstructure models. Neuroimage 155, 82–96 (2017)

    Article  Google Scholar 

  12. Hasan, K.M., et al.: Serial atlas-based diffusion tensor imaging study of uncomplicated mild traumatic brain injury in adults. J. Neurotrauma 31(5), 466–475 (2014)

    Article  Google Scholar 

  13. Jones, D.K., et al.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999)

    Article  Google Scholar 

  14. Karimi, D., Gholipour, A.: Diffusion tensor estimation with transformer neural networks. arXiv preprint arXiv:2201.05701 (2022)

  15. Karimi, D., et al.: Deep learning-based parameter estimation in fetal diffusion-weighted MRI. Neuroimage 243, 118482 (2021)

    Article  Google Scholar 

  16. Karimi, D., et al.: Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI. Neuroimage 239, 118316 (2021)

    Article  Google Scholar 

  17. Khan, S., et al.: Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 185, 593–608 (2019)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, (ICLR) (2014)

    Google Scholar 

  19. Koay, C.G., et al.: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J. Magn. Reson. 182(1), 115–125 (2006)

    Article  Google Scholar 

  20. Novikov, D.S., et al.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 32(4), e3998 (2019)

    Article  Google Scholar 

  21. Palacios, E.M., et al.: The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study. Sci. Adv. 6(32), eaaz6892 (2020)

    Google Scholar 

  22. Pietsch, M., et al.: A framework for multi-component analysis of diffusion MRI data over the neonatal period. Neuroimage 186, 321–337 (2019)

    Article  Google Scholar 

  23. Saghafi, B., et al.: Spatio-angular consistent construction of neonatal diffusion MRI atlases. Hum. Brain Mapp. 38(6), 3175–3189 (2017)

    Article  Google Scholar 

  24. Skare, S., Hedehus, M., Moseley, M.E., Li, T.Q.: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn. Reson. 147(2), 340–352 (2000)

    Article  Google Scholar 

  25. Taquet, M., Scherrer, B., Boumal, N., Peters, J.M., Macq, B., Warfield, S.K.: Improved fidelity of brain microstructure mapping from single-shell diffusion MRI. Med. Image Anal. 26(1), 268–286 (2015)

    Article  Google Scholar 

  26. Tian, Q., et al.: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning. Neuroimage 219, 117017 (2020)

    Article  Google Scholar 

  27. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  28. Uus, A., et al.: Multi-channel 4D parametrized atlas of macro-and microstructural neonatal brain development. Front. Neurosci. 15, 661704 (2021)

    Google Scholar 

  29. Veraart, J., Rajan, J., Peeters, R.R., Leemans, A., Sunaert, S., Sijbers, J.: Comprehensive framework for accurate diffusion MRI parameter estimation. Magn. Reson. Med. 70(4), 972–984 (2013)

    Article  Google Scholar 

  30. Ye, C.: Tissue microstructure estimation using a deep network inspired by a dictionary-based framework. Med. Image Anal. 42, 288–299 (2017)

    Article  Google Scholar 

  31. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  32. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)

    Article  Google Scholar 

  33. Zhang, H., Yushkevich, P.A., Rueckert, D., Gee, J.C.: Unbiased white matter atlas construction using diffusion tensor images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 211–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_26

    Chapter  Google Scholar 

Download references

Acknowledgment

This study was supported in part by the National Institutes of Health (NIH) under grants R01EB031849, R01NS106030, and R01EB032366; and in part by the Office of the Director of the NIH under grant S10OD0250111.

The DHCP dataset is provided by the developing Human Connectome Project, KCL-Imperial-Oxford Consortium funded by the European Research Council under the European Union Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. [319456]. We thank the families who supported this trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karimi, D., Gholipour, A. (2022). Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics