Skip to main content

Robust Estimation of the Microstructure of the Early Developing Brain Using Deep Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive method for studying white matter tracts of the brain. However, accurate microstructure estimation with fiber orientation distribution (FOD) using existing computational methods requires a large number of diffusion measurements. In clinical settings, this is often not possible for neonates and fetuses because of increased acquisition times and subject movements. Therefore, methods that can estimate the FOD from reduced measurements are of high practical utility. Here, we exploited deep learning and trained a neural network to directly map dMRI data acquired with as low as six diffusion directions to FODs for neonates and fetuses. We trained the method using target FODs generated from densely-sampled multiple-shell data with the multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD). Detailed evaluations on independent newborns’ test data show that our method achieved estimation accuracy levels on par with the state-of-the-art methods while reducing the number of required measurements by more than an order of magnitude. Qualitative assessments on two out-of-distribution clinical datasets of fetuses and newborns show the consistency of the estimated FODs and hence the cross-site generalizability of the method.

D. Karimi and M. B. Cuadra—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aganj, I., et al.: Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)

    Article  Google Scholar 

  2. Andescavage, N.N., et al.: Complex trajectories of brain development in the healthy human fetus. Cereb. Cortex 27(11), 5274–5283 (2017)

    Google Scholar 

  3. Bastiani, M., et al.: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project. Neuroimage 185, 750–763 (2019)

    Article  Google Scholar 

  4. Chen, R., et al.: Deciphering the developmental order and microstructural patterns of early white matter pathways in a diffusion MRI based fetal brain atlas. Neuroimage 264, 119700 (2022)

    Article  Google Scholar 

  5. Christiaens, D., et al.: Multi-shell shard reconstruction from scattered slice diffusion MRI data in the neonatal brain. ISMRM (Paris) (2018)

    Google Scholar 

  6. Counsell, S.J., Arichi, T., Arulkumaran, S., Rutherford, M.A.: Fetal and neonatal neuroimaging. Handb. Clin. Neurol. 162, 67–103 (2019)

    Article  Google Scholar 

  7. Deprez, M., et al.: Higher order spherical harmonics reconstruction of fetal diffusion MRI with intensity correction. IEEE Trans. Med. Imaging 39(4), 1104–1113 (2019)

    Article  Google Scholar 

  8. Descoteaux, M.: High angular resolution diffusion MRI: from local estimation to segmentation and tractography. Ph.D. thesis, Univ. Nice Sophia Antipolis (2008)

    Google Scholar 

  9. Dubois, J., et al.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014)

    Google Scholar 

  10. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  11. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 476 (2017)

    Article  Google Scholar 

  12. Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE TMI 35(5), 1344–1351 (2016)

    Google Scholar 

  13. Hosseini, S., et al.: CTtrack: a CNN+ transformer-based framework for fiber orientation estimation & tractography. Neurosci. Inform. 2(4), 100099 (2022)

    Article  MathSciNet  Google Scholar 

  14. Hutter, J., et al.: Time-efficient and flexible design of optimized multishell HARDI diffusion. Magn. Reson. Med. 79(3), 1276–1292 (2018)

    Article  Google Scholar 

  15. Jeurissen, B., et al.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  16. Jeurissen, B., et al.: Diffusion MRI fiber tractography of the brain. NMR Biomed. 32(4), e3785 (2019)

    Article  Google Scholar 

  17. Karimi, D., et al.: Deep learning-based parameter estimation in fetal diffusion-weighted MRI. Neuroimage 243, 118482 (2021)

    Article  Google Scholar 

  18. Karimi, D., et al.: Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI. Neuroimage 239, 118316 (2021)

    Article  Google Scholar 

  19. Kebiri, H., et al.: Slice estimation in diffusion MRI of neonatal and fetal brains in image and spherical harmonics domains using autoencoders. In: Cetin-Karayumak, S., et al. (eds.) CDMRI 2022. LNCS, vol. 13722, pp. 3–13. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21206-2_1

    Chapter  Google Scholar 

  20. Khan, S., et al.: Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 185, 593–608 (2019)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Koppers, S., Merhof, D.: Direct estimation of fiber orientations using deep learning in diffusion imaging. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 53–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_7

    Chapter  Google Scholar 

  23. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)

    Article  Google Scholar 

  24. Li, H., et al.: SuperDTI: ultrafast DTI and fiber tractography with deep learning. Magn. Reson. Med. 86(6), 3334–3347 (2021)

    Article  Google Scholar 

  25. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)

    Article  Google Scholar 

  26. Raffelt, D., et al.: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59(4), 3976–3994 (2012)

    Article  Google Scholar 

  27. Rokem, A., et al.: Evaluating the accuracy of diffusion MRI models in white matter. PLoS ONE 10(4), e0123272 (2015)

    Article  Google Scholar 

  28. Schilling, K.G., et al.: Histological validation of diffusion MRI fiber orientation distributions and dispersion. Neuroimage 165, 200–221 (2018)

    Article  Google Scholar 

  29. Schilling, K.G., et al.: Prevalence of white matter pathways coming into a single white matter voxel orientation: the bottleneck issue in tractography. Hum. Brain Mapp. 43(4), 1196–1213 (2022)

    Article  Google Scholar 

  30. Shen, K., et al.: A spatio-temporal atlas of neonatal diffusion MRI based on kernel ridge regression. In: International Symposium on Biomedical Imaging (ISBI) (2017)

    Google Scholar 

  31. Skare, S., et al.: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn. Reson. 147(2), 340–352 (2000)

    Article  Google Scholar 

  32. Tournier, J.D., et al.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  33. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  34. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76(5), 1582–1593 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Swiss National Science Foundation (project 205321-182602). We acknowledge the CIBM Center for Biomedical Imaging, a Swiss research center of excellence founded and supported by CHUV, UNIL, EPFL, UNIGE, HUG and the Leenaards and Jeantet Foundations. This research was also partly supported by the US National Institutes of Health (NIH) under awards R01NS106030 and R01EB032366; by the Office of the Director of the NIH under award S10OD0250111; and by NVIDIA Corporation; and utilized an NVIDIA RTX A6000 GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Kebiri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11546 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kebiri, H., Gholipour, A., Lin, R., Vasung, L., Karimi, D., Bach Cuadra, M. (2023). Robust Estimation of the Microstructure of the Early Developing Brain Using Deep Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics