Skip to main content

An Overview of Arsenic Contamination in Water Resources of Pakistan, Risk Assessment and Remediation Strategies

  • Chapter
  • First Online:
Global Arsenic Hazard

Abstract

Water resources of Pakistan are seriously depleting due to mismanagement. One of the major issues in the depletion of water resources in Pakistan which makes water not assessable to use is its contamination. The issue of arsenic contamination has emerged as a serious health concern in Pakistan. Pakistani population is exposed not only to toxic but poisonous levels of arsenic contamination. Only in Punjab province more than 20% population is exposed to arsenic levels of more than 10 ppb out of which 3% are exposed to more than 50 ppb levels of arsenic contamination. Various studies have shown the arsenic contamination in both shallow and deep aquifers. This chapter will give a comprehensive overview of arsenic contamination in water resources of Pakistan, their associated health risks, and possible remediation strategies to reduce exposure of arsenic contamination in Pakistani population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas M, Cheema KJ (2015) Arsenic levels in drinking water and associated health risk in district Sheikhupura, Pakistan. J Anim Plant Sci 25(3):719–724

    Google Scholar 

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S-1538S

    Article  CAS  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  Google Scholar 

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  Google Scholar 

  • Agarwal SK (2002) Pollution management, water pollution. A.P.H. Publishing Corporation, New Delhi, India

    Google Scholar 

  • Ahmad A, Bhattacharya P (2018) Arsenic contamination of groundwater in Indus River Basin of Pakistan. In: Mukherjee A (eds) Groundwater of South Asia. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3889-1_24

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19(2):181–200

    Google Scholar 

  • Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL (2021a) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater 416. https://doi.org/10.1016/j.jhazmat.2021.125912

  • Ahmed T, Noman M, Manzoor N, Shahid M, Hussaini KM, Rizwan M, Ali S, Maqsood A, Li B (2021b) Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. Environ Pollut 288:1177–1185

    Google Scholar 

  • Anjum A (2017) Adsorption technology for removal of toxic pollutants. Springer, Cham, pp 25–80. https://doi.org/10.1007/978-3-319-61146-4_2

  • Arain M, Kazi T, Jamali M, Jalbani N, Afridi H, Shah A (2008) Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere 70:1845–1856

    Article  CAS  Google Scholar 

  • Arain MB, Kazi TG, Baig JA, Jamali MK, Afridi HI, Shah AQ, Jalbani N, Sarfraz RA (2009) Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food Chem Toxicol 47(1):242–248

    Google Scholar 

  • Arora DR (2007) Textbook of microbiology, 2nd edn. CBS Publisher & distributor, New Delhi, India

    Google Scholar 

  • Arshad N, Imran S (2017) Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan. Environ Sci Pollut Res 24:2449–2463. https://doi.org/10.1007/s11356-016-7948-7

  • Baig JA, Kazi TG, ArainMB AHI, Kandhro GA, Sarfraz RA, Jamal MK, Shah AQ (2009) Evaluation of arsenic and other physicochemical parameters of surface and ground water of Jamshoro, Pakistan. J Hazard Mater 166:662–669

    Google Scholar 

  • Baloch MA, Ozturk I, Bekun FV, Khan D (2021) Modeling the dynamic linkage between financial development, energy innovation, and environmental quality: does globalization matter? Bus Strategy Environ 30(1):176–184

    Google Scholar 

  • Bandaru SR, Genuchten CM, Kumar A, Glade S, Hernandez D, Nahata M, Gadgil A (2020) Rapid and efficient arsenic removal by iron electrocoagulation enabled with in situ generation of hydrogen peroxide. Environ Sci Technol 54(10):6094–6103

    Google Scholar 

  • Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbents. Chemosphere 60:389–397

    Article  CAS  Google Scholar 

  • Bhatia S, Balamurugan G, Baranwal A (2014) High arsenic contamination in drinking water hand-pumps in Khap Tola, West Champaran, Bihar, India 2(49)

    Google Scholar 

  • Bibi S, Farooqi A, Hussain K, Haider N (2015) Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J Cleaner Prod 87:882–896

    Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Naseem S, Arain SS, Ullah N (2013) Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study. Water Res 47:1005–1020

    Google Scholar 

  • Brahman KD, Kazi TG, Baig JA, Afridi HI, Khan A, Arain SS, Arain MB (2014) Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan. Chemosphere 100:182–189

    Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Baig JA, Arain SS, Talpur FN, Kazi AG, Ali J, Panhwar AH, Arain MB (2016) Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Sci Total Environ 544:653–660

    Google Scholar 

  • Bundschuh J, Litter MI, Parvez F et al (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Google Scholar 

  • Chabowska AS, Juchiewicz JA, Ryszard (2002) Some aspects of Arsenic toxicity and carcinogenicity in living organisms with special regards to its influence on cardiovascular system, blood and bone marrow. Int J Occup Med Environ Health 15(2):101–116

    Google Scholar 

  • Chakraborti D, Rahman MM, Das B et al (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44(19):5789–5802

    Article  CAS  Google Scholar 

  • Chen W, Parette R, Zou J, Cannon F, Dempsey B (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  Google Scholar 

  • Clarkon TW (1991) Inorganic and organometallic pesticides. Handbook of pesticide Toxicology. Academic press, San Diego, pp 545–552

    Google Scholar 

  • De Souza TD, Borges AC, de Matos AT, Veloso RW, Braga AF (2018) Optimization of arsenic phytoremediation using Eic-chornia crassipes. Int J Phytoremediat 20:1129–1135

    Article  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic resistant bacteria and possible application in bioremediation. Biotechnol Reports 10:1–7

    Article  Google Scholar 

  • Duarte AA, Cardoso SJ, Alçada AJ (2009) Emerging and innovative techniques for arsenic removal applied to a small water supply system. Sustainability 1(4):1288–2130

    Article  CAS  Google Scholar 

  • Emilie E, Harue M, Takahiro S, Aki N, Yusuke S, Yusuke M, Hitoshi C (2017) Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area. J Hydrol: Reg Stud 9:34–47

    Google Scholar 

  • Farooqi A, Firdous MH (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145:839–849

    Article  CAS  Google Scholar 

  • Feistel U, Otter P, Kunz S, Grischek T, Feller J (2016) Field tests of a small pilot plant for the removal of arsenic in groundwater using coagulation and filtering. J Water Proc Eng 14:77–85

    Article  Google Scholar 

  • Franchi E, Rolli E, Marasco R (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17(5):1224–1236

    Article  CAS  Google Scholar 

  • Gandhimathi R, Babu A, Nidheesh PV, Ramesh ST, Anantha Singh TS (2015) Laboratory study on leachate treatment by electrocoagulation using fly ash and bottom ash as supporting electrolytes. J Hazard, Toxic, Radioactive Waste 19(3):04014033

    Google Scholar 

  • Government of Pakistan (2014) Economic Survey 2013–2014. Ministry of Finance. Islamabad

    Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 2:7

    Google Scholar 

  • Gupta A, Yunus M, Sankararakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres—A novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 86:150–155

    Google Scholar 

  • Hassan Z, Sultana M, Westerhoff HV, Khan SI, Röling WF (2016) Iron cycling potentials of arsenic contaminated groundwater in Bangladesh as revealed by enrichment cultivation. Geomicrobiol J 33(9):779–792

    Google Scholar 

  • Hassan A, Pariatamby A, Ossai IC, Hamid FS (2020) Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem Eng J 157:107550

    Google Scholar 

  • Hsueh YM, Cheng GS, Wu MM et al (1995) Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71(1):109–114

    Article  CAS  Google Scholar 

  • Hubaux R, Becker-Santos DD, Enfield KSS, Rowbotham D, Lam S, Lam WL, Martinez VD (2013) Molecular features in arsenic-induced lung tumors

    Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective, toxicological sciences. 123(2):305–332. https://doi.org/10.1093/toxsci/kfr184

  • Kalaruban M, Loganathan P, Nguyen TV, Nur T, Johir MA, Nguyen TH, Trinh MV, Vigneswaran S (2019) Ironimpregnated granular activated carbon for arsenic removal: application to practical column filters. J Environ Manag 239:235–243

    Google Scholar 

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34(1):304–310

    Article  CAS  Google Scholar 

  • Kazi TG, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA (2009) Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicol Environ Saf 72(2):301–309

    Article  CAS  Google Scholar 

  • Khattak MR, Muhammad B, Zahoor M (2016) Analysis of heavy metals contamination levels in drinking water collected from different provinces of Pakistan. Am-Eur J Agric Environ Sci 16:333–347. https://doi.org/10.5829/idosi.aejaes.2016.16.2.15639

  • Kılıc Z (2020) The importance of water and conscious use of water. Int J Hydro 4(5):239–241

    Article  Google Scholar 

  • Kim EJ, Baek K (2019) Selective recovery of ferrous oxalate and removal of arsenic and other metals from soil-washing wastewater using a reduction reaction. J Clean Prod 221:635–643. https://doi.org/10.1016/j.jclepro.2019.03.014

    Article  CAS  Google Scholar 

  • Kotoky P, Barooah PK, Baruah MK, Goswami A, Borah GC, Gogoi HM, Ahmed F, Gogoi A, Paul AB (2008) Fluoride and endemic fluorosis in the Karbi Anglong district, Assam, India. Fluoride 41:72–75

    CAS  Google Scholar 

  • Kumar M, Yadav A, Ramanathan AL (2020) Arsenic contamination in environment, ecotoxicological and health effects, and bioremediation strategies for its detoxification. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 245–264

    Chapter  Google Scholar 

  • Lal S, Singhal A, Kumari P (2020) Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101276

  • Li Y, Zhu X, Qi X, Shu B, Zhang X, Li K, Wei Y, Hao F, Wang H (2020a) Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122428

  • Li Y, Zhu X, Qi X, Shu B, Zhang X, Li K, Wei Y, Wang H (2020b) Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel. Chem Eng J 394. https://doi.org/10.1016/j.cej.2020.124833

  • Li J, Zhang Y, Wang F, Wang L, Liu J, Hashimoto Y, Hosomi M (2021a) Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation. Sci Total Environ 768:144521

    Google Scholar 

  • Li Y, Qi X, Li G, Wang H (2021b) Efficient removal of arsenic from copper smelting wastewater via a synergy of steel-making slag and KMnO4. J Clean Prod 287:125578. https://doi.org/10.1016/j.jclepro.2020.125578

  • Loska K, Wiechula D, Barska B, Cebula E, Chojnecka A (2003) Assessment of arsenic enrichment of cultivated soils in Southern Poland. Pol J Environ Stud 12(2):187–192

    Google Scholar 

  • Lubin HJ, Beane LE, Freeman, Cantor KP (2007) Inorganic Arsenic in drinking water: an evolving public health concern. Oxford J 99(12)

    Google Scholar 

  • Luqueno FF, Valdez FL, Melo PG, Suarez SL, Gonzalez ENA, Martinez IA, Guillermo GMS, Martinez HG, Mendoza HR, Garza AMA, Velazquez PI (2013) Heavy metal pollution in drinking water—a global risk for human health: a review. Afr J Environ Sci Technol 7(7):567–584

    Google Scholar 

  • Ma X, Gomez MA, Yuan Z, Zhang G, Wang S, Li S, Yao S, Wang X, Jia Y (2019) A novel method for preparing an As(V) solution for scorodite synthesis from an arsenic sulphide residue in a Pb refinery. Hydrometallurgy 183:1–8. https://doi.org/10.1016/j.hydromet.2018.11.003

  • Maharjan M, Watanabe C, Ahmad SA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg 73(2):477–479

    Article  CAS  Google Scholar 

  • Malana MA, Khosa MA (2011) Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. J Saudi Chem Soc 15:39–47

    Article  CAS  Google Scholar 

  • Mandal BK, Chowdhury TR, Samanta G et al (1996) Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Curr Sci 70(11):976–986

    CAS  Google Scholar 

  • Marwa N, Singh N, Srivastava S (2019) Characterizing the hypertolerance potential of two indigenous bacterial strains (Bacillus flexus and Acinetobacter junii) and their efficacy in arsenic bioremediation. J Appl Microbiol 126(4):1117–1127

    Article  CAS  Google Scholar 

  • Masuda H (2018) Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Prog Earth Planet Sci 5(1):1–1

    Google Scholar 

  • Memon AR, Jalbani RA, Shaikh TA (2014) Arsenicosis is one of the Predisposing factor of Carcinoma of Lung in non-smokers. Rep Opinion 6(2):71–74

    Google Scholar 

  • Muhammad S, Sha MT, Khan S (2010) Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem Toxicol 48:2855–2864

    Article  CAS  Google Scholar 

  • Mustafa MG, Cherry N (2013) Arsenic in drinking water and renal cancers in rural Bangladesh. Occup Environ Med 70(11):768–773

    Google Scholar 

  • Naseem S, Rafique T, Bashir E, Bhanger MI, Laghari A, Usmani TH (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78(11):1313–1321

    Article  CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  Google Scholar 

  • Nickson R, McArthur J, Shrestha B, Kyaw-Myint T, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh district, Pakistan. Appl Geochem 20:55–68

    Google Scholar 

  • Otgon N, Zhang G, Zhang K, Yang C (2019) Removal and fixation of arsenic by forming a complex precipitate containing scorodite and ferrihydrite. Hydrometallurgy 186:58–65. https://doi.org/10.1016/j.hydromet.2019.03.012

    Article  CAS  Google Scholar 

  • Pakistan Council of Research in Water Resources (PCRWR) (2005) Water quality status. Third report 2003–2004, Islamabad, Pakistan. Publication no. 131–2005

    Google Scholar 

  • Pal P (2015) Groundwater Arsenic remediation. In: Chapter 4—Arsenic removal by membrane filtration. Butterworth-Heinemann, pp 105–177

    Google Scholar 

  • Patoli AA, Patoli BB, Mehraig V (2010) High prevalence of multi-drug resistant Escherichia Coli in drinking water samples from Hyderabad. Gomal J Med Sci 8:23–26

    Google Scholar 

  • Peng X, Chen J, Kong L, Hu X (2018) Removal of arsenic from strongly acidic wastewater using phosphorus pentasulfide as precipitant: UV-light promoted sulfuration reaction and particle aggregation. Environ Sci Technol 52:4794–4801. https://doi.org/10.1021/acs.est.8b00206

    Article  CAS  Google Scholar 

  • Petrusevski B, Sharma S, Schippers JC, Shordt K (2007) Arsenic in drinking water; thematic overview paper. IRC Int Water Sanitation Centre

    Google Scholar 

  • Podgorski JE, Eqani SAMAS, Khanam T, Ullah R, Shen H (2017) Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Environ Stud 3

    Google Scholar 

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106

    Article  CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. McGraw Hill

    Google Scholar 

  • PSQCA (2017) Pakistan standards quality control authority. Islamabad, Pakistan

    Google Scholar 

  • Rabbani U, Mahar G, Siddique A et al (2017) Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan. Environ Geochem Health 39:179–190. https://doi.org/10.1007/s10653-016-9818-0

    Article  CAS  Google Scholar 

  • Raj KR, Kardam A, Srivastava S (2013) Development of polyethylenimine modified Zea mays as a high capacity biosorbent for the removal of as (III) and as (V) from aqueous system. Int J Miner Process 122:66–70

    Article  CAS  Google Scholar 

  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Masood S, Ali S, Fahad S, Nasim W (2016) Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: a case study. Ecol Eng 95:90–100

    Google Scholar 

  • Rehman F, Cheema T, Azeem T et al (2020) Groundwater quality and potential health risks caused by arsenic (As) in Bhakkar, Pakistan. Environ Earth Sci 79:529. https://doi.org/10.1007/s12665-020-09270-2

    Article  CAS  Google Scholar 

  • Rekik SB, Gassara S, Bouaziz J, Deratani A, Baklouti S (2017) Development and characterization of porous membranes based on kaolin/chitosan composite. Appl Clay Sci 143:1–9. https://doi.org/10.1016/j.clay.2017.03.008

    Article  CAS  Google Scholar 

  • Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC. A review of Arsenic poisoning and its effects on human health. Department of Civil Engineering Indian Institute of Technology, Kharagpur, 721302, India

    Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation-A critical review. Chemosphere 158:37–49

    Google Scholar 

  • Sato Y, Kang M, Kamei T, Magara Y (2003) Performance of Nano filtration for arsenic removal. Water Res 36(13):3371–3377

    Google Scholar 

  • Shah MT, Tariq S (2007) Environmental geochemistry of the soils of Peshawar Basin. NWFP Pakistan. J Chem Soc Pak 29(5):438–445

    CAS  Google Scholar 

  • Shahab A, Shihua Q, Rashid A, Hasan FU, Sohail MT (2016) Evaluation of water quality for drinking and agricultural suitability in the lower Indus plain in Sindh Province, Pakistan. Pol J Env Stud 25(6):2563–2574

    Article  CAS  Google Scholar 

  • Shahab A, Qi SH, Rad S, Keita S, Khan M, Adnan S (2018a) Groundwater vulnerability assessment using GISbased DRASTIC method in the irrigated and coastal region of Sindh province, Pakistan. Hydrol Res. https://doi.org/10.2166/nh.2018.001

  • Shahab A, Qi SH, Zaheer M, Rashid A, Talib MA, Ashraf U (2018b) Hydrochemical characteristics and water quality assessment for drinking and agricultural purposes in district Jacobabad, lower Indus plain, Pakistan. Int J Agric & Biol Eng 11(2):115–121

    Google Scholar 

  • Shahid N, Shahid M, Siddique HF, Bakht G, Shah GM (2015) Assessing drinking water quality in Punjab, Pakistan. Polish J Environ Studies 24(6)

    Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018a) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319

    Google Scholar 

  • Shahid M, Dumat C, Niazi NK, Khalid S (2018b) Global scale arsenic pollution: increase the scientific knowledge to reduce human exposure. VertigO-la revue électronique en sciences de l'environnement. https://doi.org/10.4000/vertigo.21331

  • Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manag 297. https://doi.org/10.1016/j.jenvman.2021.113268.

  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A et al (2018) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746. https://doi.org/10.1016/j.chemosphere.2018.02.002

    Article  CAS  Google Scholar 

  • Shemirani F, Baghdadi M, Ramezani M (2005) Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta 65:882–887. https://doi.org/10.1016/j.talanta.2004.08.009

  • Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, India, pp 395–407

    Google Scholar 

  • Singh P, Borthakur A, Singh R, Bhadouria R, Singh VK, Devi P (2021) A critical review on the research trends and emerging technologies for arsenic decontamination from water Groundw. Sustain. Dev 100607

    Google Scholar 

  • Singh MK, Kumar A (2012) A global problem of arsenic in drinking water and its mitigation—a review. IJAET 3(1):196–203

    Google Scholar 

  • Smith AH, Steinmaus CM (2009) Health effects of arsenic and chromium in drinking water: recent human findings. Annu Rev Public Health 30:107

    Google Scholar 

  • Sohel N, Persson LA, Rahman M et al (2009) Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20:824–830

    Article  Google Scholar 

  • Song S, Lopez-Valdivieso A, Hernandez-Campos DJ, Peng C, Monroy-Fernandez MG, Razo-Soto I (2006) Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res 40(2):364–372

    Google Scholar 

  • Srivastava S, Suprasanna P, D’souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremediation 14(5):506–517

    Google Scholar 

  • Stucker VK, Williams KH, Robbins MJ, Ranville JF (2013) Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study. Environ Toxicol Chem 32:1216–1223

    Article  CAS  Google Scholar 

  • Su CC, Lin YY, Chang TK, Chiang CT, Chung JA, Hsu YY, Lian IB (2010) Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients' residential areas in Taiwan. BMC Public Health 10(1):1–0

    Google Scholar 

  • Sun Y, Zhou G, Xiong X, Guan X, Li L, Bao H (2013) Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Res 47:4340–4348

    Google Scholar 

  • Suzuki S, Katoh M (2020) Estimation of potential arsenic leaching from its phases in excavated sedimentary and metamorphic rocks. Environ Geochem Health. 42(2):407–418

    Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2018) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1276-z

  • Tantry BA, Shrivastava D, Taher I, Tantry MN (2015) Mechanisms of action and related health effects. J Environ Anal Toxicol 5(6):2161–2525

    Article  Google Scholar 

  • Tariq J, Ashraf M, Jaffar M, Afzal M (1996) Pollution status of the Indus River, Pakistan, through heavy metal and macronutrient contents of fish, sediment and water. Water Res 30:1337–1344

    Article  CAS  Google Scholar 

  • Tariq A, Ullah U, Asif M et al (2019) Biosorption of arsenic through bacteria isolated from Pakistan. Int Microbiol 22:59–68. https://doi.org/10.1007/s10123-018-0028-8

    Article  CAS  Google Scholar 

  • Tchounwou PB, Centeno JA (2008) Toxicologic pathology. In: Gad SC (ed) Handbook of pre-clinical development. Wiley, pp 551–580

    Chapter  Google Scholar 

  • Tchounwou PB, Patlolla A, Centeno JA (2003) Carcinogenic and systemic health effects associated with Arsenic exposure—a critical review. Soc Toxicol Pathol 31:575–588

    CAS  Google Scholar 

  • Thakur LS, Mondal P (2017) Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation. J Environ Manag 190:102–112

    Article  CAS  Google Scholar 

  • Thornton I (2016) Sources and pathways of arsenic in the geochemical environment: health implications. Geol Soc Spec Publ 113(1):153–161. https://doi.org/10.1144/GSL.SP.1996.113.01.12

    Article  Google Scholar 

  • Ullah Z, Rashid A, Ghani J et al (2022) Arsenic contamination, water toxicity, source apportionment, and potential health risk in groundwater of Jhelum Basin, Punjab, Pakistan. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03139-0

  • Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 15(151):326–342. https://doi.org/10.1016/j.jenvman.2014.12.051

    Article  CAS  Google Scholar 

  • Wan X, Lei M, Chen T (2020) Review on remediation technologies for arsenic contaminated soil. Front Environ Sci Eng 14(2):1–14

    Article  Google Scholar 

  • Waseem A, Arshad J, Iqbal F, Sajjad A, Mehmood Z, Murtaza G (2014) Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Res Int 1–29. https://doi.org/10.1155/2014/813206

  • World Health Organization (2013) Contaminated sites and health: report of two WHO workshops: Syracuse, Italy, 18 November 2011 & Catania, Italy, 21–22 June 2012

    Google Scholar 

  • Zeeshan MH, Khan RU, Shafiq M, Sabir A (2020) Polyamide intercalated nanofiltration membrane modified with biofunctionalized core shell composite for efficient removal of Arsenic and Selenium from wastewater. J Water Proc Eng 34:101175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safdar Bashir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, S. et al. (2023). An Overview of Arsenic Contamination in Water Resources of Pakistan, Risk Assessment and Remediation Strategies. In: Niazi, N.K., Bibi, I., Aftab, T. (eds) Global Arsenic Hazard. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16360-9_9

Download citation

Publish with us

Policies and ethics