Skip to main content

Molecular Aspects of Arsenic Responsive Microbes in Soil-Plant-Aqueous Triphasic Systems

  • Chapter
  • First Online:
Global Arsenic Hazard
  • The original version of this chapter was revised: The affiliation of authors “S. K. Pathak and S. Srivastava” has been changed. The correction to this chapter is available at https://doi.org/10.1007/978-3-031-16360-9_25

Abstract

Arsenic (As) resistance is a primordial activity in microbes since millions of years, although, only in recent decades, the major scientific elucidations are made. Molecular mechanisms which are involved in As-resistance and tolerance are attributed to three domains- genomics, transcriptomics and proteomics. From the deep underground aquifers, As is released due to microbial activities to the surface soil where other microbial communities tackle this contamination by either cellular sequestrations or by safe transportation and passage extracellularly via transporter proteins. This whole scenario involves several gene operons, up/down regulated gene clusters and protein families. Genes involved in the redox changes of As intracellularly while co-transports other elemental ions in the course of metabolism and tolerance will be discussed here. Transcriptomics studies can specifically and accurately correlate with the findings of genomics data of As resistance in microbes. Further and more recent proteomics studies depict the relation of these microbial participations with their surrounding plant systems. Associations with plants can influence the microbial community profiling along with their ability to tolerate As effectively. This chapter will discuss briefly all the molecular aspects of As toxicity in microbes in the soil-plant-water triphasic environment with their involved machineries for remediation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  • Afsal F, Majumdar A, Kumar JS, Bose S (2020) Microbial inoculation to alleviate the metal toxicity in crop plants and subsequent growth promotion. In: Sustainable solutions for elemental deficiency and excess in crop plants. Springer, Singapore, pp 451–479

    Google Scholar 

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19(2):181–200

    Article  CAS  Google Scholar 

  • Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41(6):1366–1378

    Article  CAS  Google Scholar 

  • Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Gutiérrez-Sánchez G, Volke-Sepúlveda T (2018) An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd: a proteomic approach. Sci Total Environ 625:762–774

    Article  Google Scholar 

  • Alka S, Shahir S, Ibrahim N, Rahmad N, Haliba N, Abd Manan F (2021) Histological and proteome analyses of Microbacterium foliorum-mediated decrease in arsenic toxicity in Melastoma malabathricum. 3 Biotech 11(7):1–17

    Google Scholar 

  • Altowayti WAH, Almoalemi H, Shahir S, Othman N (2020) Comparison of culture-independent and dependent approaches for identification of native arsenic-resistant bacteria and their potential use for arsenic bioremediation. Ecotoxicol Environ Saf 205:111267

    Article  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40(2):299–322

    Article  CAS  Google Scholar 

  • Archana A, Jaitly AK (2015) Mycoremediation: utilization of fungi for reclamation of heavy metals at their optimum remediation conditions. Biolife 3(1):77–106

    Google Scholar 

  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD (2018) A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: a promising and feasible approach. Environ Exp Bot 150:115–126

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Dwivedi S, Singh SN, Srivastava S, Singh PC, Chauhan PS (2021) Microbial consortium mediated growth promotion and arsenic reduction in rice: an integrated transcriptome and proteome profiling. Ecotoxicol Environ Saf 228:113004

    Article  CAS  Google Scholar 

  • Barla A, Shrivastava A, Majumdar A, Upadhyay MK, Bose S (2017) Heavy metal dispersion in water saturated and water unsaturated soil of Bengal delta region, India. Chemosphere 100(168):807–816

    Article  Google Scholar 

  • Belfiore C, Ordonez OF, Farías ME (2013) Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17(3):421–431

    Google Scholar 

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 2473

    Google Scholar 

  • Biswas A, Swain S, Chowdhury NR, Joardar M, Das A, Mukherjee M, Roychowdhury T (2019) Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. Environ Sci Pollut Res 26(22):22929–22944. https://doi.org/10.1007/S11356-019-05595-Z

    Article  CAS  Google Scholar 

  • Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manage J (EEMJ) 6(3):237–251

    Article  CAS  Google Scholar 

  • Castillo R, Saier MH (2010) Functional promiscuity of homologues of the bacterial ArsA ATPases. Int J Microbiol 2010:187373

    Article  Google Scholar 

  • Chen J, Bhattacharjee H, Rosen BP (2015) ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 96(5):1042–1052

    Article  CAS  Google Scholar 

  • Chen J, Yoshinaga M, Garbinski LD, Rosen BP (2016) Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Mol Microbiol 100(6):945–953

    Article  CAS  Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2019) Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J Hazard Mater 362:394–402

    Article  CAS  Google Scholar 

  • Chowdhury NR, Das R, Joardar M, Ghosh S, Bhowmick S, Roychowdhury T (2018) Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. Chemosphere 210:987–997. 101016/jchemosphere201807041

    Google Scholar 

  • Cleiss-Arnold J, Koechler S, Proux C, Fardeau ML, Dillies MA, Coppee JY, Arsène-Ploetze F, Bertin PN (2010) Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genom 11(1):1–10

    Article  Google Scholar 

  • Das A, Joardar M, De A, Mridha D, Chowdhury NR, Khan MTBK, Chakrabartty P, Roychowdhury T (2021a) Pollution index and health risk assessment of arsenic through different groundwater sources and its load on soil-paddy-rice system in a part of Murshidabad district of West Bengal, India. Groundwater Sustain Develop 15:100652. https://doi.org/10.1016/j.gsd.2021.100652

    Article  Google Scholar 

  • Das A, Joardar M, Chowdhury NR, De A, Mridha D, Roychowdhury T (2021b) Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: risk for human and environment. Environ Geochem Health 43:3005–3025. https://doi.org/10.1007/s10653-021-00808-2

    Article  CAS  Google Scholar 

  • Das S, Kim GW, Lee JG, Bhuiyan MSI, Kim PJ (2021c) Silicate fertilization improves microbial functional potentials for stress tolerance in arsenic-enriched rice cropping systems. J Hazard Mater 417:125953

    Article  CAS  Google Scholar 

  • Doyle RJ, Matthews TH, Streips U (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bacteriol 143(1):471–480

    Article  CAS  Google Scholar 

  • Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156(3):1069–1074

    Article  CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 and 2.03 Å. Structure 9(2):125–132

    Google Scholar 

  • Esterhuizen-Londt M, Schwartz K, Pflugmacher S (2016) Using aquatic fungi for pharmaceutical bioremediation: uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response. Fungal Biol 120(10):1249–1257

    Article  CAS  Google Scholar 

  • Fendorf S, Nico PS, Kocar BD, Masue Y, Tufano KJ (2010) Arsenic chemistry in soils and sediments. In: Developments in soil science, Vol 34. Elsevier, pp 357–378

    Google Scholar 

  • Francesconi KA, Kuehnelt D (2001) Arsenic compounds in the environmental chemistry of arsenic, p 51

    Google Scholar 

  • Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V, Andrès J, Cholley PE, Dillies MA, Jagla B, Koechler S, Leva Y (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS ONE 10(9):e0139011

    Article  Google Scholar 

  • Gardner BM, Balázs G, Scheer M, Tuna F, McInnes EJ, McMaster J, Lewis W, Blake AJ, Liddle ST (2015) Triamidoamine uranium (IV)–arsenic complexes containing one-, two-and threefold U-As bonding interactions. Nat Chem 7(7):582–590

    Article  CAS  Google Scholar 

  • Ge Y, Ning Z, Wang Y, Zheng Y, Zhang C, Figeys D (2016) Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure. Chemosphere 145:112–118

    Article  CAS  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ (2015) Bacterial ability in AsIII oxidation and AsV reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere 138:995–1000

    Article  CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35(19):3857–3862

    Article  CAS  Google Scholar 

  • Goswami R, Mandal S, Mandal S, Padhy P, Ray S, Mazumder S (2014) Effect of temperature and arsenic on Aeromonas hydrophila growth, a modelling approach. Biologia 69(7):825–833

    Article  CAS  Google Scholar 

  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59(5):629–638

    Article  CAS  Google Scholar 

  • Gupta A, Majumdar A, Srivastava S (2022) Approaches for assisted phytoremediation of arsenic contaminated sites. In: Assisted phytoremediation. Elsevier, pp 221–242

    Google Scholar 

  • Halter D, Casiot C, Heipieper HJ, Plewniak F, Marchal M, Simon S, Arsène-Ploetze F, Bertin PN (2012) Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis. Appl Microbiol Biotechnol 93(4):1735–1744

    Article  CAS  Google Scholar 

  • Hamba Y, Tamiru M (2016) Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian J Nat Appl Sci 5:2

    Google Scholar 

  • Hassan SH, Awad YM, Kabir MH, Oh SE, Joo JH (2010) Bacterial biosorption of heavy metals. In: Biotechnology cracking new pastures, pp 79–110

    Google Scholar 

  • Hassan SH, Kim SJ, Jung AY, Joo JH, Oh SE, Yang JE (2009) Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. J Gen Appl Microbiol 55(1):27–34

    Article  CAS  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225(2):1–25

    Article  Google Scholar 

  • Huang Y, Li H, Rensing C, Zhao K, Johnstone L, Wang G (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. strain No. 1

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71

    Article  CAS  Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37(12):2319–2322

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. Taylor & Francis, pp 13–21

    Google Scholar 

  • Kang SY, Lee JU, Kim KW (2007) Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 36(1):54–58

    Article  Google Scholar 

  • Kao WC, Huang CC, Chang JS (2008) Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J Hazard Mater 158(1):100–106

    Article  CAS  Google Scholar 

  • Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188(3):1081–1088

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38(1):17–26

    Article  CAS  Google Scholar 

  • Kaur J, Anand V, Srivastava S, Bist V, Tripathi P, Naseem M, Nand S, Khare P, Srivastava PK, Bisht S, Srivastava S (2020) Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. Ecotoxicol Environ Saf 195:110480

    Article  CAS  Google Scholar 

  • Koechler S, Bertin PN, Plewniak F, Baltenweck R, Casiot C, Heipieper HJ, Bouchez O, Arsène‐Ploetze F, Hugueney P, Halter D (2016) Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non‐targeted metabolomic approaches. Environ Microbiol 18(4):1289–1300

    Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841

    Article  CAS  Google Scholar 

  • Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (2008) Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321(5891):967–970

    Article  CAS  Google Scholar 

  • Kumar JN, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33(1):27

    CAS  Google Scholar 

  • Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E (2015) Unraveling the effect of arsenic on the model M edicago–E nsifer interaction: a transcriptomic meta-analysis. New Phytol 205(1):255–272

    Article  CAS  Google Scholar 

  • Lett MC, Muller D, Lièvremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194(2):207–208

    Article  CAS  Google Scholar 

  • Leung WC, Chua H, Lo W (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. In: Twenty-second symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, NJ, pp 171–184

    Google Scholar 

  • Li B, Lin J, Mi S, Lin J (2010) Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Biores Technol 101(24):9811–9814

    Article  CAS  Google Scholar 

  • Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci 103(42):15617–15622

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  Google Scholar 

  • Majumdar A, Bose S (2017) Toxicogenesis and metabolism of arsenic in rice and wheat plants with probable mitigation strategies. In: Arsenic: risks of exposure, behavior in the environment and toxicology, pp 149–166

    Google Scholar 

  • Majumdar A, Bose S (2018) A glimpse on uptake kinetics and molecular responses of arsenic tolerance in rice plants. In: Mechanisms of arsenic toxicity and tolerance in plants. Springer, Singapore, pp 299–315

    Google Scholar 

  • Majumdar A (2021) Arsenic bio-regulation management and altered plant physiology under different irrigation regime. Doctoral dissertation, Indian Institute of Science Education and Research Kolkata, pp 1–218

    Google Scholar 

  • Majumdar A, Barla A, Upadhyay MK, Ghosh D, Chaudhuri P, Srivastava S, Bose S (2018) Vermiremediation of metal (loid) s via Eichornia crassipes phytomass extraction: a sustainable technique for plant amelioration. J Environ Manage 220:118–125

    Article  CAS  Google Scholar 

  • Majumdar A, Kumar JS, Bose S (2020a) Agricultural water management practices and environmental influences on arsenic dynamics in rice field. In: Arsenic in drinking water and food. Springer, Singapore, pp 425–443

    Google Scholar 

  • Majumdar A, Shrivastava A, Sarkar SR, Sathyavelu S, Barla A, Bose S (2020b) Hydrology, sedimentation and mineralisation: a wetland ecology perspective. Clim Change Environ Sustain 8(2):134–151

    Article  Google Scholar 

  • Majumdar A, Upadhyay MK, Giri B, Srivastava S, Srivastava AK, Jaiswal MK, Bose S (2021) Arsenic dynamics and flux assessment under drying-wetting irrigation and enhanced microbial diversity in paddy soils: a four year study in Bengal delta plain. J Hazard Mater 409:124443

    Article  CAS  Google Scholar 

  • Majumdar A, Upadhyay MK, Kumar JS, Barla A, Srivastava S, Jaiswal MK, Bose S (2019) Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicol Environ Saf 180:770–779

    Article  CAS  Google Scholar 

  • Majumdar A, Upadhyay MK, Ojha M, Afsal F, Giri B, Srivastava S, Bose S (2022) Enhanced phytoremediation of metal (loid) s via spiked ZVI nanoparticles: an urban clean-up strategy with ornamental plants. Chemosphere 288:132588

    Article  CAS  Google Scholar 

  • Min D, Wu J, Cheng L, Liu DF, Lau TC, Yu HQ (2021) Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. J Hazard Mater 403:123611

    Article  CAS  Google Scholar 

  • Mridha D, Paul I, De A, Ray I, Das A, Joardar M, Chowdhury NR, Bhadoria PBS, Roychowdhury T (2021) Rice seed (IR64) priming with potassium humate for improvement of seed germination, seedling growth and antioxidant defense system under arsenic stress. Ecotoxicol Environ Saf 219:112313. https://doi.org/10.1016/J.ECOENV.2021.112313

    Article  CAS  Google Scholar 

  • Mridha D, Ray I, Sarkar J, De A, Joardar M, Das A, Chowdhury NR, Acharya K, Roychowdhury T (2022) Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: a pot to plate study. Environ Poll 293:118561

    Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. J Bacteriol 185(1):135–141

    Article  CAS  Google Scholar 

  • Mustapha MU, Halimoon N (2015) Microorganisms and biosorption of heavy metals in the environment: a review paper. J Microb Biochem Technol 7(5):253–256

    Article  CAS  Google Scholar 

  • Nandre VS, Bachate SP, Salunkhe RC, Bagade AV, Shouche YS, Kodam KM (2017) Enhanced detoxification of arsenic under carbon starvation: a new insight into microbial arsenic physiology. Curr Microbiol 74(5):614–622

    Article  CAS  Google Scholar 

  • Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME (2018) Haloarchaea from the Andean Puna: biological role in the energy metabolism of arsenic. Microb Ecol 76(3):695–705

    Article  Google Scholar 

  • Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26(7):522–536

    Article  CAS  Google Scholar 

  • Oyedepo TA (2011) Biosorption of lead (II) and copper (II) metal ions on Calotropis procera (Ait.). Sci J Purel Appl Chem 1–7

    Google Scholar 

  • Özer A, Özer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100(1–3):219–229

    Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130

    Article  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteom 75(3):921–937

    Google Scholar 

  • Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. In: Handbook of arsenic toxicology. Academic Press, pp 627–674

    Google Scholar 

  • Paul S, Chakraborty S, Ali MN, Ray DP (2015) Arsenic distribution in environment and its bioremediation: a review. Int J Agric Environ Biotechnol 8(1):189

    Article  Google Scholar 

  • Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci 106(13):5213–5217

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci 103(7):2075–2080

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Rehman A, Butt SA, Hasnain S (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotech 9(10):1493–1498

    Article  CAS  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382(2):298–302

    Article  CAS  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Biores Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  Google Scholar 

  • Saltikov CW, Wildman RA, Newman DK (2005) Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J Bacteriol 187(21):7390–7396

    Google Scholar 

  • Santini JM, vanden Hoven, R.N. (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186(6):1614–1619

    Article  CAS  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2014) Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Environ Sci Pollut Res 21(14):8645–8662

    Article  CAS  Google Scholar 

  • Sarkar SR, Majumdar A, Barla A, Pradhan N, Singh S, Ojha N, Bose S (2017) A conjugative study of Typha latifolia for expunge of phyto-available heavy metals in fly ash ameliorated soil. Geoderma 305:354–362

    Article  Google Scholar 

  • Shah D, Rudakiya DM, Iyer V, Gupte A (2018) Simultaneous removal of hazardous contaminants using polyvinyl alcohol coated Phanerochaete chrysosporium. Int J Agric Environ Biotechnol 11(2):235–241

    Google Scholar 

  • Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A (2016) Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng 142(9):C6015001

    Article  Google Scholar 

  • Sher S, Rehman A (2021) Proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 under arsenite stress and its potential role in arsenic removal. Curr Res Microbial Sci 2:100020

    Article  CAS  Google Scholar 

  • Sherbet GV (1978) Biophysical characterisation of the cell surface. Academic press, p 414

    Google Scholar 

  • Shrivastava A, Barla A, Majumdar A, Singh S, Bose S (2020) Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere 238:124988

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, Von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19(2):169–180

    Article  CAS  Google Scholar 

  • Srivastava AK, Pandey M, Ghate T, Kumar V, Upadhyay MK, Majumdar A, Sanjukta AK, Agrawal AK, Bose S, Srivastava S, Suprasanna P (2021) Chemical intervention for enhancing growth and reducing grain arsenic accumulation in rice. Environ Pollut 276:116719

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava S, Bist V, Awasthi S, Chauhan R, Chaudhry V, Singh PC, Dwivedi S, Niranjan A, Agrawal L, Chauhan PS (2018) Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J Hazard Mater 351:177–187

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  Google Scholar 

  • Szyttenholm J, Chaspoul F, Bauzan M, Ducluzeau AL, Chehade MH, Pierrel F, Denis Y, Nitschke W, Schoepp-Cothenet B (2020) The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1861(10):148252

    Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  CAS  Google Scholar 

  • Tang X, Zou L, Su S, Lu Y, Zhai W, Manzoor M, Liao Y, Nie J, Shi J, Ma LQ, Xu J (2021) Long-term manure application changes bacterial communities in rice rhizosphere and arsenic speciation in rice grains. Environ Sci Technol 55(3):1555–1565

    Article  CAS  Google Scholar 

  • Thenmozhi R, Arumugam K, Nagasathya A, Thajuddin N, Paneerselvam A (2013) Studies on mycoremediation of used engine oil contaminated soil samples. Adv Appl Sci Res 4(2):110–118

    CAS  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chakrabarty D (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    Article  CAS  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20(6):659–667

    Article  CAS  Google Scholar 

  • Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Biores Technol 99(6):1563–1570

    Article  CAS  Google Scholar 

  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S (2021) Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: a two year field study. J Hazard Mater 407:124368

    Google Scholar 

  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S (2019) An assessment of arsenic hazard in groundwater–soil–rice system in two villages of Nadia district, West Bengal, India. Environm Geochem Health 41(6):2381–2395

    Article  CAS  Google Scholar 

  • Upadhyay MK, Majumdar A, Srivastava AK, Bose S, Suprasanna P, Srivastava S (2022) Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. Chemosphere 292:133482

    Google Scholar 

  • Upadhyay MK, Majumdar A, Suresh Kumar J, Srivastava S (2020) Arsenic in rice agro-ecosystem: solutions for safe and sustainable rice production. Front Sustain Food Syst 53

    Google Scholar 

  • van der Wal A, Norde W, Zehnder AJ, Lyklema J (1997) Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf B 9(1–2):81–100

    Google Scholar 

  • Wang L, Chen S, Xiao X, Huang X, You D, Zhou X, Deng Z (2006) arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl Environ Microbiol 72(5):3738–3742

    Google Scholar 

  • Wang L, Jeon B, Sahin O, Zhang Q (2009) Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 75(15):5064–5073

    Article  CAS  Google Scholar 

  • Weitzman MA (2015) Isolation and characterization of native fungi from contaminated ecosystems for the bioremediation of arsenic (Doctoral dissertation) University of Wisconsin-La Crosse

    Google Scholar 

  • Yan G, Chen X, Du S, Deng Z, Wang L, Chen S (2019) Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 65(2):329–338

    Article  CAS  Google Scholar 

  • Yang HC, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biomed J 39(1):5–13

    Article  Google Scholar 

  • Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65(13):2037–2042

    Article  CAS  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192(14):3755–3762

    Article  CAS  Google Scholar 

  • Zhang L, Qin X, Tang J, Liu W, Yang H (2017) Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl Geochem 77:80–88

    Article  CAS  Google Scholar 

  • Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the IISER Kolkata, BHU and McGill University library facilities for the collection of articles and database availability. AM is thankful to the Ministry of Earth Sciences, India (MoES/P.O. (Geosci)/56/2015) for providing JRF and IISER Kolkata for providing SRF. Bulk of the fellowship amount to AM has been used for research expenses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, A., Afsal, F., Pathak, S.K., Upadhayay, M.K., Roychowdhury, T., Srivastava, S. (2023). Molecular Aspects of Arsenic Responsive Microbes in Soil-Plant-Aqueous Triphasic Systems. In: Niazi, N.K., Bibi, I., Aftab, T. (eds) Global Arsenic Hazard. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16360-9_14

Download citation

Publish with us

Policies and ethics