Skip to main content

Nanobiosensors’ Potentialities for Environmental Monitoring

  • Chapter
  • First Online:
Nanobiosensors for Environmental Monitoring

Abstract

Pollutants have become the global concern for which there is an intense demand for a quick, reliable, and sustainable system for their determination in the environment and agricultural land. Quantitative analytical tools such as chromatography and spectroscopy, albeit precise and accurate, expensive, requires experienced technician, complicated sample preparation steps, and difficult to assess at high frequencies in real-time. To overcome the issues, nanoparticle-based biosensors are considered as a potential tool to detect both biotic and abiotic toxins. With headways in nanotechnology, numerous specialists have utilized the one-of-a-kind properties of nanomaterials (counting a high surface-area-to-volume proportion) to foster efficiency and sensitivity in detection techniques. Nanomaterials have enabled us to design devices at the microscale level, prompting fast, versatile, and sensitive microorganism symptomatic frameworks that can recognize airborne microbes in clinics, air vents, and planes and bioterrorism in open spaces. Hence, this chapter gives an overview of the usage of nanobiosensors in the detection of contaminants. Further, the present scenario and future scope are also discussed in the development of novel detection devices, and their advantages over other environmental monitoring methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Pérez KM, Heya MS, Parra-Saldívar R, Iqbal HM (2020) Nano-biomaterials in-focus as sensing/detection cues for environmental pollutants. Case Stud Chem Environ Eng 2:100055

    Article  Google Scholar 

  • Ahmed SR, Kim J, Suzuki T et al (2016) Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron 85:503–508

    Article  CAS  Google Scholar 

  • Ahmed SR, Takemeura K, Li T-C et al (2017) Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 87:558–565

    Article  CAS  Google Scholar 

  • Akgönüllü S, Yavuz H, Denizli A (2020) SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 219:121219

    Article  Google Scholar 

  • Alam MN, Chatterjee A, Das S et al (2015) Burmese grape fruit juice can trigger the “logic gate”-like colorimetric sensing behavior of Ag nanoparticles towards toxic metal ions. RSC Adv 5:23419–23430

    Article  CAS  Google Scholar 

  • Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15:1869–1894

    Article  CAS  Google Scholar 

  • Algar WR, Stewart MH, Scott AM et al (2014) Quantum dots as platforms for charge transfer-based biosensing: challenges and opportunities. J Mater Chem B 2:7816–7827

    Article  CAS  Google Scholar 

  • Anbia M, Amirmahmoodi S (2016) Removal of Hg (II) and Mn (II) from aqueous solution using nanoporous carbon impregnated with surfactants. Arab J Chem 9:S319–S325

    Article  CAS  Google Scholar 

  • Anderson RM, Fraser C, Ghani AC et al (2004) Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philos Trans R Soc Lond B Biol Sci 359:1091–1105

    Article  Google Scholar 

  • Arduini F, Guidone S, Amine A et al (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens Actuators B Chem 179:201–208

    Article  CAS  Google Scholar 

  • Asghar W, Sher M, Khan NS et al (2019) Microfluidic chip for detection of fungal infections. ACS Omega 4:7474–7481

    Article  CAS  Google Scholar 

  • Ashiba H, Sugiyama Y, Wang X et al (2017) Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens Bioelectron 93:260–266

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero J-Y et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Bhatnagar I, Mahato K, Ealla KKR et al (2018) Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis. Int J Biol Macromol 110:449–456

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 571–577

    Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Google Scholar 

  • Bulbul G, Hayat A, Andreescu S (2015) A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale 7:13230–13238

    Article  CAS  Google Scholar 

  • Byzova NA, Vinogradova SV, Porotikova EV et al (2018) Lateral flow immunoassay for rapid detection of grapevine leafroll-associated virus. Biosensors 8:111

    Article  CAS  Google Scholar 

  • Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    Article  CAS  Google Scholar 

  • Cao G, Noti JD, Blachere FM et al (2011) Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler. J Environ Monit 13:3321–3328

    Article  CAS  Google Scholar 

  • Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681:8–15

    Article  CAS  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  • Chen S, Chen X, Zhang L et al (2017) Electrochemiluminescence detection of Escherichia coli O157: H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces 9:5430–5436

    Article  CAS  Google Scholar 

  • Chen Y, Yang Y, Wang Y et al (2020a) Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry 133:107453

    Article  CAS  Google Scholar 

  • Chen Z, Zhang Z, Zhai X et al (2020b) Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem 92:7226–7231

    Article  CAS  Google Scholar 

  • Cheng Y, Ma B, Tan C-P et al (2020) Hierarchical macro-microporous ZIF-8 nanostructures as efficient nano-lipase carriers for rapid and direct electrochemical detection of nitrogenous diphenyl ether pesticides. Sens Actuators B Chem 321:128477

    Article  CAS  Google Scholar 

  • Cho I-H, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:1–12

    Article  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Google Scholar 

  • Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Article  CAS  Google Scholar 

  • Darbha GK, Singh AK, Rai US et al (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130:8038–8043

    Article  CAS  Google Scholar 

  • De Corcuera JIR, Cavalieri RP, Powers JR (2004) Blanching of foods. In: Encyclopedia of agri, food and biological engineering. Marcel Dekker, New York City, NY, USA, pp 1–5

    Google Scholar 

  • Devarakonda S, Singh R, Bhardwaj J, Jang J (2017) Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors 17:2597

    Article  Google Scholar 

  • Diba FS, Kim S, Lee HJ (2015) Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 72:355–361

    Article  CAS  Google Scholar 

  • Dong Y, Zhou Y, Ding Y et al (2014) Sensitive detection of Pb (II) at gold nanoparticle/polyaniline/graphene modified electrode using differential pulse anodic stripping voltammetry. Anal Methods 6:9367–9374

    Article  CAS  Google Scholar 

  • Dong S, Zhao R, Zhu J et al (2015) Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Appl Mater Interfaces 7:8834–8842

    Article  CAS  Google Scholar 

  • Doorneweerd DD, Henne WA, Reifenberger RG, Low PS (2010) Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir 26:15424–15429

    Article  CAS  Google Scholar 

  • Dzyadevych SV, Arkhypova VN, Soldatkin AP et al (2008) Amperometric enzyme biosensors: past, present and future. Irbm 29:171–180

    Article  Google Scholar 

  • Eissa S, Siaj M, Zourob M (2015) Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron 69:148–154

    Article  CAS  Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-new tricks for an old dog

    Google Scholar 

  • Erdely A, Dahm M, Chen BT et al (2013) Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol 10:1–14

    Article  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica 20:1055–1058

    Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810

    Article  CAS  Google Scholar 

  • Ferreira AP, Werneck MM, Ribeiro RM (1999) Aerobiological pathogen detection by evanescent wave fibre optic sensor. Biotechnol Tech 13:447–452

    Article  CAS  Google Scholar 

  • Florschütz K, Schröter A, Schmieder S et al (2013) ‘Phytochip’: on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J Virol Methods 189:80–86

    Article  Google Scholar 

  • Foudeh AM, Trigui H, Mendis N et al (2015) Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal Bioanal Chem 407:5541–5545

    Article  CAS  Google Scholar 

  • Fronczek CF, Yoon J-Y (2015) Biosensors for monitoring airborne pathogens. J Lab Autom 20:390–410

    Article  CAS  Google Scholar 

  • Fu Y, Romay V, Liu Y et al (2017) Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sens Actuators, B Chem 249:691–699

    Article  CAS  Google Scholar 

  • Grabowska I, Malecka K, Stachyra A et al (2013) Single electrode genosensor for simultaneous determination of sequences encoding hemagglutinin and neuraminidase of avian influenza virus type H5N1. Anal Chem 85:10167–10173

    Article  CAS  Google Scholar 

  • Guan H, Liu X, Wang W, Liang J (2014) Direct colorimetric biosensing of mercury (II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 121:527–532

    Article  CAS  Google Scholar 

  • Ha W, Yu J, Wang R et al (2014) “Green” colorimetric assay for the selective detection of trivalent chromium based on Xanthoceras sorbifolia tannin attached to gold nanoparticles. Anal Methods 6:5720–5726

    Article  CAS  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  Google Scholar 

  • Hanein Y, Bareket-Keren L (2013) Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front Neural Circuits 6:122

    Google Scholar 

  • Haniu H, Saito N, Matsuda Y et al (2012) Basic potential of carbon nanotubes in tissue engineering applications. J Nanomat 2012:1–10

    Google Scholar 

  • Harrison RP, Chauhan VM (2018) Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors. Biointerphases 13:01A301

    Article  Google Scholar 

  • Holford TR, Davis F, Higson SP (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34:12–24

    Article  CAS  Google Scholar 

  • Hong S, Lee C (2018) The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol J 34:85

    Article  CAS  Google Scholar 

  • Huang C, Wen T, Shi F-J et al (2020) Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 5:12550–12556

    Article  CAS  Google Scholar 

  • Huang J, Xie Z, Xie Z et al (2016) Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta 913:121–127

    Article  CAS  Google Scholar 

  • Huang K-J, Sun J-Y, Xu C-X et al (2010) A disposable immunosensor based on gold colloid modified chitosan nanoparticles-entrapped carbon paste electrode. Microchim Acta 168:51–58

    Article  CAS  Google Scholar 

  • HuiáShin H, JoonáCha H (2012) A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst 137:3609–3612

    Article  Google Scholar 

  • Jain S, Singh SR, Horn DW et al (2012) Development of an antibody functionalized carbon nanotube biosensor for foodborne bacterial pathogens. J Biosens Bioelectron 11:002

    Google Scholar 

  • Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sens Actuators B Chem 191:681–687

    Article  CAS  Google Scholar 

  • Justino CI, Duarte AC, Rocha-Santos TA (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors 17:2918

    Article  Google Scholar 

  • Karnaushenko D, Ibarlucea B, Lee S et al (2015) Light weight and flexible high-performance diagnostic platform. Adv Healthcare Mater 4:1517–1525

    Article  CAS  Google Scholar 

  • Kazemi-Darsanaki R, Azizzadeh A, Nourbakhsh M et al (2012) Biosensors: functions and applications. J Biol Today’s World 2:20–23

    Google Scholar 

  • Kennedy R, Wakeham AJ (2008) Development of detection systems for the sporangia of Peronospora destructor. In: Lebeda A, Spencer-Phillips PTN, Cooke BM (eds) The downy mildews-genetics, molecular biology and control. Springer, Berlin, pp 147–155

    Google Scholar 

  • Khaledian S, Nikkhah M, Shams-bakhsh M, Hoseinzadeh S (2017) A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J Gen Plant Pathol 83:231–239

    Article  CAS  Google Scholar 

  • Kinnamon DS, Krishnan S, Brosler S et al (2018) Screen printed graphene oxide textile biosensor for applications in inexpensive and wearable point-of-exposure detection of influenza for at-risk populations. J Electrochem Soc 165:B3084

    Article  CAS  Google Scholar 

  • Koedrith P, Thasiphu T, Weon J-I et al (2015) Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. Sci World J 2015:1–12

    Google Scholar 

  • Kong Y, Wu T, Wu D et al (2018) An electrochemical sensor based on Fe3O4@ PANI nanocomposites for sensitive detection of Pb2+ and Cd2+. Anal Methods 10:4784–4792

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P (2020) Application of DNA-nanosensor for environmental monitoring: recent advances and perspectives. Current Pollut Rep 1–21

    Google Scholar 

  • Kuswandi B (2019) Nanobiosensor approaches for pollutant monitoring. Environ Chem Lett 17:975–990

    Article  CAS  Google Scholar 

  • Kwasny D, Tehrani SE, Almeida C et al (2018) Direct detection of Candida albicans with a membrane based electrochemical impedance spectroscopy sensor. Sensors 18:2214

    Article  Google Scholar 

  • Lautner G, Balogh Z, Bardóczy V et al (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918–926

    Article  CAS  Google Scholar 

  • Lee J, Ahmed SR, Oh S et al (2015) A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens Bioelectron 64:311–317

    Article  CAS  Google Scholar 

  • Lee J, Morita M, Takemura K, Park EY (2018a) A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron 102:425–431

    Article  CAS  Google Scholar 

  • Lee WS, Kang T, Kim S-H, Jeong J (2018b) An antibody-immobilized silica inverse opal nanostructure for label-free optical biosensors. Sensors 18:307

    Article  Google Scholar 

  • Lee J, Kim S, Chung HY et al (2021a) Electrochemical microgap immunosensors for selective detection of pathogenic Aspergillus niger. J Hazard Mater 411:125069

    Article  CAS  Google Scholar 

  • Lee JI, Jang SC, Chung J et al (2021b) Colorimetric allergenic fungal spore detection using peptide-modified gold nanoparticles. Sens Actuators, B Chem 327:128894

    Article  CAS  Google Scholar 

  • Li Y, Hong M, Qiu B et al (2014) Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosens Bioelectron 54:358–364

    Article  CAS  Google Scholar 

  • Li Q, Lu Z, Tan X et al (2017a) Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron 97:59–64

    Article  CAS  Google Scholar 

  • Li Z, Qu S, Cui L, Zhang S (2017b) Detection of carbofuran pesticide in seawater by using an enzyme biosensor. J Coastal Res 80:1–5

    Google Scholar 

  • Li Z, Yi Y, Luo X et al (2020) Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 92:1518–1524

    Article  CAS  Google Scholar 

  • Lima AS, Prieto KR, Santos CS et al (2018) In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosens Bioelectron 99:108–114

    Article  CAS  Google Scholar 

  • Lin H-Y, Huang C-H, Lu S-H et al (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Article  CAS  Google Scholar 

  • Liu X, Cheng Z, Fan H et al (2011) Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim Acta 56:6266–6270

    Article  CAS  Google Scholar 

  • Liu X, Li W-J, Li L et al (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens Actuators, B Chem 191:408–414

    Article  CAS  Google Scholar 

  • Long F, Zhu A, Shi H et al (2013) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:1–7

    Article  Google Scholar 

  • Luna-Moreno D, Sánchez-Álvarez A, Islas-Flores I et al (2019) Early detection of the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors 19:465

    Article  Google Scholar 

  • Ma Y, Niu H, Cai Y (2011) Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem Commun 47:12643–12645

    Article  CAS  Google Scholar 

  • Malhotra S, Verma A, Tyagi N, Kumar V (2017) Biosensors: principle, types and applications. Int J Adv Res Innov Ideas Educ 3:3639–3644

    Google Scholar 

  • Malik P, Katyal V, Malik V et al (2013) Nanobiosensors: concepts and variations. Int Schol Res Notices 2013

    Google Scholar 

  • Mancuso M, Jiang L, Cesarman E, Erickson D (2013) Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale 5:1678–1686

    Article  CAS  Google Scholar 

  • Marques I, Pinto da Costa J, Justino C et al (2017) Carbon nanotube field effect transistor biosensor for the detection of toxins in seawater. Int J Environ Anal Chem 97:597–605

    Article  CAS  Google Scholar 

  • Martins JF, Castilho ML, Cardoso MA et al (2012) Identification of Paracoccidioides brasiliensis by gold nanoprobes. In: Biomedical vibrational spectroscopy V: advances in research and industry. International Society for Optics and Photonics, p 82190Z

    Google Scholar 

  • Martín M, Salazar P, Jiménez C et al (2015) Rapid Legionella pneumophila determination based on a disposable core–shell Fe3O4@ poly (dopamine) magnetic nanoparticles immunoplatform. Anal Chim Acta 887:51–58

    Article  Google Scholar 

  • Mayorga-Martinez CC, Pino F, Kurbanoglu S et al (2014) Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem B 2:2233–2239

    Article  CAS  Google Scholar 

  • McNamee SE, Elliott CT, Delahaut P, Campbell K (2013) Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ Sci Pollut Res 20:6794–6807

    Article  CAS  Google Scholar 

  • Medina-Sánchez M, Ibarlucea B, Pérez N et al (2016) High-performance three-dimensional tubular nanomembrane sensor for DNA detection. Nano Lett 16:4288–4296

    Article  Google Scholar 

  • Medintz IL, Sapsford KE, Konnert JH et al (2005a) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501–5510

    Article  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005b) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  • Meng X, Wei J, Ren X et al (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407

    Article  CAS  Google Scholar 

  • Mirabi-Semnakolaii A, Daneshgar P, Moosavi-Movahedi AA et al (2011) Sensitive determination of herbicide trifluralin on the surface of copper nanowire electrochemical sensor. J Solid State Electrochem 15:1953–1961

    Article  CAS  Google Scholar 

  • Miranda BS, Linares EM, Thalhammer S, Kubota LT (2013) Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosens Bioelectron 45:123–128

    Article  CAS  Google Scholar 

  • Moitra P, Alafeef M, Dighe K et al (2020) Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14:7617–7627

    Article  CAS  Google Scholar 

  • Morawska L, Cao J (2020) Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 139:105730

    Article  CAS  Google Scholar 

  • Morens DM, Subbarao K, Taubenberger JK (2012) Engineering H5N1 avian influenza viruses to study human adaptation. Nature 486:335–340

    Article  CAS  Google Scholar 

  • Morrell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49:3640–3645

    Article  CAS  Google Scholar 

  • Muenchen DK, Martinazzo J, de Cezaro AM et al (2016) Pesticide detection in soil using biosensors and nanobiosensors. Biointerface Res Appl Chem 6

    Google Scholar 

  • Naja G, Hrapovic S, Male K et al (2008) Rapid detection of microorganisms with nanoparticles and electron microscopy. Microsc Res Tech 71:742–748

    Article  Google Scholar 

  • Neely LA, Audeh M, Phung NA, et al (2013) T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 5:182ra54–182ra54

    Google Scholar 

  • Nguyen BH, Dai Tran L, Do QP et al (2013) Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater Sci Eng, C 33:2229–2234

    Article  CAS  Google Scholar 

  • Nikitin M, Deych K, Grevtseva I et al (2018) Preserved microarrays for simultaneous detection and identification of six fungal potato pathogens with the use of real-time PCR in matrix format. Biosensors 8:129

    Article  CAS  Google Scholar 

  • Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    Article  CAS  Google Scholar 

  • Oliveira TM, Barroso MF, Morais S et al (2013) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143

    Article  CAS  Google Scholar 

  • Pan Y, Zhou J, Su K et al (2017) A novel quantum dot fluorescence immunosensor based on magnetic beads and portable flow cytometry for detection of okadaic acid. Procedia Technol 27:214–216

    Article  Google Scholar 

  • Pang Y, Rong Z, Wang J et al (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532

    Article  CAS  Google Scholar 

  • Park EJ, Lee J-Y, Kim JH et al (2010) Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta 82:904–911

    Article  CAS  Google Scholar 

  • Park J, You X, Jang Y et al (2014) ZnO nanorod matrix based electrochemical immunosensors for sensitivity enhanced detection of Legionella pneumophila. Sens Actuators B Chem 200:173–180

    Article  CAS  Google Scholar 

  • Patient A US CDC (2021) Limited human-to-human transmission of novel influenza A (H3N2) virus—Iowa, November 2011. MMWR 2011 60(dispatch):1–3

    Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006a) Nanowire-based biosensors. ACS Publications

    Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006b) Nanowire sensors for medicine and the life sciences

    Google Scholar 

  • Pitt JI, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162:233–243

    Article  CAS  Google Scholar 

  • Purwar S, Srivastava S (2021) Development of modern tools for environmental monitoring of pathogens and toxicant. In: Environmental microbiology and biotechnology. Springer, Berlin, pp 185–210

    Google Scholar 

  • Qian ZS, Shan XY, Chai LJ et al (2015) A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231

    Article  CAS  Google Scholar 

  • Ravikumar A, Panneerselvam P, Radhakrishnan K et al (2017) DNAzyme based amplified biosensor on ultrasensitive fluorescence detection of Pb (II) ions from aqueous system. J Fluoresc 27:2101–2109

    Article  CAS  Google Scholar 

  • Razo SC, Panferov VG, Safenkova IV et al (2018) How to improve sensitivity of sandwich lateral flow immunoassay for corpuscular antigens on the example of potato virus Y? Sensors 18:3975

    Article  Google Scholar 

  • Razo SC, Panferova NA, Panferov VG et al (2019) Enlargement of gold nanoparticles for sensitive immunochromatographic diagnostics of potato brown rot. Sensors 19:153

    Article  Google Scholar 

  • Rigby S, Procop GW, Haase G et al (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40:2182–2186

    Article  CAS  Google Scholar 

  • Rigo AA, Cezaro AMD, Muenchen DK et al (2020a) Heavy metals detection in river water with cantilever nanobiosensor. J Environ Sci Health B 55:239–249

    Article  CAS  Google Scholar 

  • Rigo AA, de Cezaro AM, Martinazzo J et al (2020b) Detection of lead in river water samples applying cantilever nanobiosensor. Water Air Soil Pollut 231:1–11

    Article  Google Scholar 

  • Sabela M, Balme S, Bechelany M et al (2017) A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 19:1700270

    Article  Google Scholar 

  • Sakamoto H, Minpou Y, Sawai T et al (2016) A novel optical biosensing system using Mach–Zehnder-type optical waveguide for influenza virus detection. Appl Biochem Biotechnol 178:687–694

    Article  CAS  Google Scholar 

  • Santos CS, Mossanha R, Pessôa CA (2015) Biosensor for carbaryl based on gold modified with PAMAM-G4 dendrimer. J Appl Electrochem 45:325–334

    Article  CAS  Google Scholar 

  • Sayago I, Aleixandre M, Santos JP (2019) Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 9:21

    Article  CAS  Google Scholar 

  • Schubert F, Wollenberger U, Scheller FW et al (1991) Artificially coupled reactions with immobilized enzymes: biological analogs and technical consequences. Bioinstrum Biosens 19

    Google Scholar 

  • Seker F, Meeker K, Kuech TF, Ellis AB (2000) Surface chemistry of prototypical bulk II–VI and III–V semiconductors and implications for chemical sensing. Chem Rev 100:2505–2536

    Article  CAS  Google Scholar 

  • Seo G, Lee G, Kim MJ et al (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14:5135–5142

    Article  CAS  Google Scholar 

  • Shen M-C, Lai J-C, Hong C-Y, Wang G-J (2017) Electrochemical aptasensor for detecting Der p2 allergen using polycarbonate-based double-generation gold nanoparticle chip. Sens Bio-Sens Res 13:75–80

    Article  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K et al (2016) Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta Part A Mol Biomol Spectrosc 169:216–222

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Yusof NA et al (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens Bio-Sens Res 2:16–22

    Article  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7:1–11

    Google Scholar 

  • Slocik JM, Stone MO, Naik RR (2005) Synthesis of gold nanoparticles using multifunctional peptides. Small 1:1048–1052

    Google Scholar 

  • Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 5:11563–11568

    Article  CAS  Google Scholar 

  • Sreekanth SP, Alodhayb A, Assaifan AK et al (2021) Multi-walled carbon nanotube-based nanobiosensor for the detection of cadmium in water. Environ Res 197:111148

    Article  CAS  Google Scholar 

  • Srivastava A, Sidler M, Allain AV et al (2015) Optically active quantum dots in monolayer WSe2. Nat Nanotechnol 10:491

    Article  CAS  Google Scholar 

  • Suaifan GA, Zourob M (2019) Portable paper-based colorimetric nanoprobe for the detection of Stachybotrys chartarum using peptide labeled magnetic nanoparticles. Microchim Acta 186:1–11

    Article  CAS  Google Scholar 

  • Sun S-W, Liu H-L, Zhou Y et al (2017) Copper–nitrogen-doped graphene hybrid as an electrochemical sensing platform for distinguishing DNA bases. Anal Chem 89:10858–10865

    Article  CAS  Google Scholar 

  • Swain KK, Bhand S (2021) A colorimetric paper-based ATONP-ALP nanobiosensor for selective detection of Cd2+ ions in clams and mussels. Anal Bioanal Chem 413:1715–1727

    Article  CAS  Google Scholar 

  • Takemura K, Adegoke O, Takahashi N et al (2017) Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens Bioelectron 89:998–1005

    Article  CAS  Google Scholar 

  • Tam PD, Van Hieu N, Chien ND et al (2009) DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J Immunol Methods 350:118–124

    Article  CAS  Google Scholar 

  • Tang L, Xie X, Zhou Y et al (2017) A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform. Biochem Eng J 117:7–14

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology 133–164

    Google Scholar 

  • Tian H, Liu Y, Li Y et al (2020) An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368:638–642

    Article  CAS  Google Scholar 

  • Touhami A (2014) Biosensors and nanobiosensors: design and applications. Nanomedicine 15:374–403

    Google Scholar 

  • Tran TL, Nguyen TT, Tran TTH et al (2017) Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Phys E 93:83–86

    Article  CAS  Google Scholar 

  • Umasankar Y, Ramasamy RP (2013) Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138:6623–6631

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  Google Scholar 

  • Van Thu V, Tam PD, Dung PT (2013) Rapid and label-free detection of H5N1 virus using carbon nanotube network field effect transistor. Curr Appl Phys 13:1311–1315

    Article  Google Scholar 

  • Veerapandian M, Hunter R, Neethirajan S (2016) Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta 155:250–257

    Article  CAS  Google Scholar 

  • Villamizar RA, Maroto A, Rius FX (2009) Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sens Actuators B Chem 136:451–457

    Article  CAS  Google Scholar 

  • Viswanathan S, Wu L, Huang M-R, Ho JA (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly (3, 4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78:1115–1121

    Article  CAS  Google Scholar 

  • Von Eiff M, Roos N, Schulten R et al (1995) Pulmonary aspergillosis: early diagnosis improves survival. Respiration 62:341–347

    Article  Google Scholar 

  • Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanal Int J Devoted Fundam Pract Aspects Electroanal 17:7–14

    Google Scholar 

  • Wang L, Li PC (2007) Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agric Food Chem 55:10509–10516

    Article  CAS  Google Scholar 

  • Wang Q, Fang J, Cao D et al (2015) An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Biosens Bioelectron 72:10–17

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Liu J, Zhou H (2019a) T4 DNA polymerase-assisted upgrade of a nicking/polymerization amplification strategy for ultrasensitive electrochemical detection of Watermelon mosaic virus. Anal Bioanal Chem 411:2915–2924

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Zhou H (2019b) Visual detection of cucumber green mottle mosaic virus based on terminal deoxynucleotidyl transferase coupled with DNAzymes amplification. Sensors 19:1298

    Article  CAS  Google Scholar 

  • Wang ZL (2003) Nanowires and nanobelts materials. Properties and device nanowires and nanobelts of functional materials, vol II

    Google Scholar 

  • Wang Z-Z, Zheng Z, Wang X-C et al (2020) Rapid detection of anti-SARS-CoV-2 IgM and IgG using a selenium nanoparticle-based lateral flow immunoassay

    Google Scholar 

  • Wei H, Vikesland PJ (2015) pH-triggered molecular alignment for reproducible SERS detection via an AuNP/nanocellulose platform. Sci Rep 5:1–10

    Article  Google Scholar 

  • Wu Z, Guo W-J, Bai Y-Y et al (2018) Digital single virus electrochemical enzyme-linked immunoassay for ultrasensitive H7N9 avian influenza virus counting. Anal Chem 90:1683–1690

    Article  CAS  Google Scholar 

  • Xiong S, Deng Y, Zhou Y et al (2018) Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. Anal Methods 10:5468–5479

    Article  Google Scholar 

  • Xu L, Wang R, Kelso LC et al (2016) A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1. Sens Actuators B Chem 234:98–108

    Article  CAS  Google Scholar 

  • Yang Y, Kang M, Fang S et al (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sens Actuators B Chem 214:63–69

    Article  CAS  Google Scholar 

  • Ye WW, Tsang M-K, Liu X et al (2014) Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small 10:2390–2397

    Article  CAS  Google Scholar 

  • Yoo SM, Kang T, Kang H et al (2011) Combining a nanowire SERRS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. Small 7:3371–3376

    Google Scholar 

  • Yoo M-S, Shin M, Kim Y et al (2017) Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175:269–274

    Article  CAS  Google Scholar 

  • Yun Y, Dong Z, Shanov V et al (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37

    Article  Google Scholar 

  • Zeng C, Huang X, Xu J et al (2013) Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 440:18–22

    Article  CAS  Google Scholar 

  • Zhan F, Wang T, Iradukunda L, Zhan J (2018) A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal Chim Acta 1036:153–161

    Article  CAS  Google Scholar 

  • Zhan L, Li CM, Wu WB, Huang CZ (2014) A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles–graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun 50:11526–11528

    Article  CAS  Google Scholar 

  • Zhan L, Zhen SJ, Wan XY et al (2016) A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus. Talanta 148:308–312

    Article  CAS  Google Scholar 

  • Zhang D, Liu Z, Li C et al (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4:1919–1924

    Article  CAS  Google Scholar 

  • Zhang W, Han C, Jia B et al (2017a) A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim Acta 236:319–327

    Article  CAS  Google Scholar 

  • Zhang Y, Chen M, Li H et al (2017b) A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sens Actuators B Chem 244:606–615

    Article  CAS  Google Scholar 

  • Zhao VXT, Wong TI, Zheng XT et al (2020) Colorimetric biosensors for point-of-care virus detections. Mater Sci Ener Technol 3:237–249

    CAS  Google Scholar 

  • Zhao Y, Zhang W, Lin Y, Du D (2013) The vital function of Fe3O4@ Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5:1121–1126

    Article  CAS  Google Scholar 

  • Zhou C-H, Zhao J-Y, Pang D-W, Zhang Z-L (2014) Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal Chem 86:2752–2759

    Article  CAS  Google Scholar 

  • Zhu X, Ai S, Chen Q et al (2009) Label-free electrochemical detection of avian influenza virus genotype utilizing multi-walled carbon nanotubes–cobalt phthalocyanine–PAMAM nanocomposite modified glassy carbon electrode. Electrochem Commun 11:1543–1546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am over helmed in all humbleness and gratefulness to acknowledge my depth to all the contributors who have helped me to complete this piece of work, well above the level of simplicity and into something concrete. I would like to express my special thanks of gratitude to Dr. Ravindra Pratap Singh and Mr. Kshitij RB Singh who gave me the golden opportunity to do this wonderful project on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Kapil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapil, S., Bhattu, M., Vinayak, A., Pal, N., Sharma, V. (2022). Nanobiosensors’ Potentialities for Environmental Monitoring. In: Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (eds) Nanobiosensors for Environmental Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-16106-3_3

Download citation

Publish with us

Policies and ethics