Skip to main content
Log in

A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil

  • Others
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum, the devastating causal agent of potato bacterial wilt, is a soil-borne bacterium that can survive in the soil for a long time. The development of sensitive on-field detection methods for this pathogen is highly desirable due to its widespread host range and distribution. A novel nanobiosensor was thus developed to detect unamplified genomic DNA of R. solanacearum in farm soil. Gold nanoparticles functionalized with single-stranded oligonucleotides served as a probe to detect R. solanacearum genomic DNA. The advantages of this strategy include rapidity, facile usage and being a visual colorimetric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  • Bakthavathsalam P, Rajendran VK, Mohammed JAB (2012) A direct detection of Escherichia coli genomic DNA using gold nanoprobes. J Nanobiotechnol 10:8

    Article  CAS  Google Scholar 

  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R (2006) Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–1434

    Article  CAS  PubMed  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. Bacterial wilt disease and the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 449–461

    Google Scholar 

  • Fegan M, Holoway G, Hayward AC, Timmis J (1998) Development of a diagnostic test based on the polymerase chain reaction (PCR) to identify strains of R. solanacearum exhibiting the biovar 2 genotype. In: Prior P et al (eds) Bacterial wilt disease. Springer, Berlin, pp 34–43

    Chapter  Google Scholar 

  • Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928

    Article  PubMed  Google Scholar 

  • Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  • Guarise C, Pasquato L, De Filippis V, Scrimin P (2006) Gold nanoparticles-based protease assay. Proc Natl Acad Sci USA 103:3978–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336

    Article  CAS  PubMed  Google Scholar 

  • Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Nakaho K (2014) Sensitive quantitative detection of Ralstonia solanacearum in soil by the most probable number-polymerase chain reaction (MPN-PCR) method. Appl Microbiol Biotechnol 98:4169–4177

    Article  CAS  PubMed  Google Scholar 

  • Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  • Kalidasan K, NeoJL, Uttamchandani M (2013) Direct visual detection of Salmonella genomic DNA using gold nanoparticles. Mol Biosyst 9:618–621

    Article  CAS  PubMed  Google Scholar 

  • Kaminker R, Lahav M, Motiei L, Vartanian M, Popovitz-Biro R, Iron MA, van der Boom ME (2010) Molecular structure–function relations of the optical properties and dimensions of gold nanoparticle assemblies. Angew Chem 122:1240–1243

    Article  Google Scholar 

  • Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81:6122–6129

    Article  CAS  PubMed  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  • Lang X, Qian L, Guan P, Zi J, Chen M (2011) Localized surface plasmon resonance of nanoporous gold. Appl Phys Lett 98:093701

    Article  Google Scholar 

  • Lee J-S, Lytton-Jean AK, Hurst SJ, Mirkin CA (2007) Silver nanoparticle—oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano lett 7:2112–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenarčič R, Morisset D, Pirc M, Llop P, Ravnikar M, Dreo T (2014) Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum. PLoS One 9:e96027

    Article  PubMed  PubMed Central  Google Scholar 

  • Liandris E, Gazouli M, Andreadou M, Čomor M, Abazovic N, Sechi LA, Ikonomopoulos J (2009) Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles. J Microbiol Methods 78:260–264

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 118:96–100

    Article  Google Scholar 

  • Liu S, Zhang Z, Han M (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77:2595–2600

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Jiang L, Cesarman E, Erickson D (2013) Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale 5:1678–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson-Smith A, Jones P, Elphinstone JG, Forde SMD (1995) Production of antibodies to Pseudomonas solanacearum the causative agent of bacterial wilt. Food Agric Immunol 7:67–79

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  CAS  PubMed  Google Scholar 

  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA-gold nanoparticle probes. Sens Actuators B Chem 181:644–651

    Article  CAS  Google Scholar 

  • Young JM, Rawlence NJ, Weyrich LS, Cooper A (2014) Limitations and recommendations for successful DNA extraction from forensic soil samples: a review. Sci Justice 54:238–244

    Article  PubMed  Google Scholar 

  • Zhao W, Chiuman W, Lam JC, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Council of Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaledian, S., Nikkhah, M., Shams-bakhsh, M. et al. A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J Gen Plant Pathol 83, 231–239 (2017). https://doi.org/10.1007/s10327-017-0721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-017-0721-z

Keywords

Navigation