Skip to main content

Recent Trends in Rapid Environmental Monitoring of Toxicants Using Nanobiosensors

  • Chapter
  • First Online:
Nanobiosensors for Environmental Monitoring
  • 226 Accesses

Abstract

The previous research has focussed on detecting pathogens in real-world environmental models. The combined use of nanoparticles with devices will facilitate multiplex detection systems, mining techniques, and nanomaterial-based research to simultaneously detect relevant pathogens in a given environment. However, some artefacts associated with these nanoparticles, non-specific binding, aggregation, and toxicity must be administered before they reach their full potential and biosensors. A key advantage is that the fast results, because the signal amplification method instead of the target has revolutionized the detection model. These methods, combined with green nanotechnology, promote safe access to drinking water and reduce global health, as well as accelerating potentially existing methods that provide sensitivity, specificity, speed, visibility, and self-cleaning to complement or replace certain criteria. Dealing with environmental issues at an early stage will bear fruit in the long run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391(5):1609–1618

    Article  CAS  Google Scholar 

  • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol 19(1):1–26

    Article  Google Scholar 

  • Bashir MF, Jiang B, Komal B, Bashir MA, Farooq TH, Iqbal N, Bashir M (2020) Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ Res 187:109652

    Article  CAS  Google Scholar 

  • Camarca A, Varriale A, Capo A, Pennacchio A, Calabrese A, Giannattasio C, Murillo Almuzara C, D’Auria S, Staiano M (2021) Emergent biosensing technologies based on fluorescence spectroscopy and surface plasmon resonance. Sensors 21(3):906

    Google Scholar 

  • Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417(1):1–6

    Article  CAS  Google Scholar 

  • Carlsten C, Salvi S, Wong GW, Chung KF (2020) Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur Respir J 55(6).

    Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9):569–586

    Article  CAS  Google Scholar 

  • Chang CC (2021) Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors 11(7):233

    Article  CAS  Google Scholar 

  • Chelliah R, Wei S, Daliri EB, Rubab M, Elahi F, Yeon SJ, Yan P, Liu S, Oh DH (2021) Development of nanosensors based intelligent packaging systems: food quality and medicine. Nanomaterials 11(6):1515

    Article  CAS  Google Scholar 

  • Dave PK, Rojas-Cessa R, Dong Z, Umpaichitra V (2021) Survey of saliva components and virus sensors for prevention of COVID-19 and infectious diseases. Biosensors 11(1):14

    Google Scholar 

  • Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB (2020) Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front Microbiol 11:3513

    Google Scholar 

  • Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F (2019) Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31(30):1806739

    Article  Google Scholar 

  • Dixon TA, Williams TC, Pretorius IS (2021) Sensing the future of bio-informational engineering. Nat Commun 12(1):1–2

    Article  Google Scholar 

  • Du D, Chen S, Song D, Li H, Chen X (2008) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24(3):475–479

    Article  CAS  Google Scholar 

  • Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313

    Article  CAS  Google Scholar 

  • Fanti G, Borghi F, Spinazzè A, Rovelli S, Campagnolo D, Keller M, Cattaneo A, Cauda E, Cavallo DM (2021) Features and practicability of the next-generation sensors and monitors for exposure assessment to airborne pollutants: a systematic review. Sensors 21(13):4513

    Article  CAS  Google Scholar 

  • Feng Z, Fan H, Cheng L, Zhang H, Fan H, Liu J (2021) Advanced biomimetic nanomaterials for non-invasive disease diagnosis. Front Mater 8:83

    Article  Google Scholar 

  • Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286

    Article  CAS  Google Scholar 

  • Fu J, An X, Yao Y, Guo Y, Sun X (2019) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens Actuators B Chem 287:503–509

    Article  CAS  Google Scholar 

  • Imene B, Cui Z, Zhang X, Gan B, Yin Y, Tian Y, Deng H, Li H (2014) 4-Amino-3-mercaptobenzoic acid functionalized gold nanoparticles: synthesis, selective recognition and colorimetric detection of cyhalothrin. Sens Actuators B Chem 199:161–167

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  Google Scholar 

  • Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN (2021) Pathogen detection with electrochemical biosensors: advantages, challenges and future perspectives. J Electroanal Chem 114989

    Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

    Article  CAS  Google Scholar 

  • Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chemical Communications 46(19):3256–3258

    Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25(1):224–227

    Article  CAS  Google Scholar 

  • Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJ (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 27;8(2):e57750

    Google Scholar 

  • Liu J, Zhang X, Yang M, Hu M, Zhong G (2018) Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci Rep 8(1):1

    Google Scholar 

  • Lupetti KO, Vieira IC, Fatibello-Filho O (2004) Jack fruit-capric acid biosensor for total phenols determination in wastewaters. Anal Lett 37(9):1833–1846

    Article  CAS  Google Scholar 

  • Magana-Arachchi DN, Wanigatunge RP (2020) Ubiquitous waterborne pathogens. In: Waterborne pathogens. Butterworth-Heinemann, pp 15–42

    Google Scholar 

  • Maghsoudi AS, Hassani S, Mirnia K, Abdollahi M (2021) Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. Int J Nanomed 16:803

    Article  Google Scholar 

  • Mandler D, Kraus-Ophir S (2011) Self-assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15(7–8):1535

    Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Pub Health 14

    Google Scholar 

  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A (2018) Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23(4):795

    Article  Google Scholar 

  • Meena M, Zehra A, Swapnil P, Marwal A, Yadav G, Sonigra P (2021) Endophytic nanotechnology: an approach to study scope and potential applications. Front Chem 9:47

    Article  Google Scholar 

  • Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, Baradaran B, de la Guardia M (2017) Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal Chem 97:445–457

    Article  CAS  Google Scholar 

  • Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E (2019) Characterization of lipid–protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem Rev 119(9):6086–6161

    Article  CAS  Google Scholar 

  • Nagar A, Pradeep T (2020) Clean water through nanotechnology: needs, gaps, and fulfilment. ACS Nano 14(6):6420–6435

    Article  CAS  Google Scholar 

  • Nam D, Cha JM, Park K (2021) Next-generation wearable biosensors developed with flexible bio-chips. Micromachines. 12(1):64

    Article  Google Scholar 

  • Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21(4):1109

    Article  CAS  Google Scholar 

  • Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV (2018) Nano-biosensor platforms for detecting food allergens—new trends. Sens Bio-Sens Res 18:13–30

    Article  Google Scholar 

  • Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M (2019) Immobilized enzymes in biosensor applications. Materials 12(1):121

    Article  CAS  Google Scholar 

  • Pérez-López B, Merkoçi A (2011) Nanoparticles for the development of improved (bio) sensing systems. Anal Bioanal Chem 399(4):1577-90

    Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of candidatus phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 525–34

    Google Scholar 

  • Ramanavicius S, Ramanavicius A (2021) Conducting polymers in the design of biosensors and biofuel cells. Polymers 13(1):49

    Article  CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Path 34(4):507–515

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2011) Optical detection systems using immobilized aptamers. Biosens Bioelectron 26(9):3725–3736

    Article  CAS  Google Scholar 

  • Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML (2021) Nano-fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants 10(1):2

    Article  CAS  Google Scholar 

  • Shiddiky MJ, Torriero AA (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26(5):1775–1787

    Article  CAS  Google Scholar 

  • Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M (2021) Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts 23(2):213–239

    Article  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519(3):1156–1159

    Article  CAS  Google Scholar 

  • Song M, Lin X, Peng Z, Xu S, Jin L, Zheng X, Luo H (2021) Materials and methods of biosensor interfaces with stability. Front Mater 7:438

    Article  Google Scholar 

  • Suhito IR, Koo KM, Kim TH (2021) Recent advances in electrochemical sensors for the detection of biomolecules and whole cells. Biomedicines 9(1):15

    Article  CAS  Google Scholar 

  • Toribio-Avedillo D, Blanch AR, Muniesa M, Rodríguez-Rubio L (2021) Bacteriophages as fecal pollution indicators. Viruses 13(6):1089

    Article  Google Scholar 

  • Ullo SL, Sinha GR (2020) Advances in smart environment monitoring systems using IoT and sensors. Sensors 20(11):3113

    Article  CAS  Google Scholar 

  • Umasankar Y, Ramasamy RP (2013) Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138(21):6623–6631

    Article  CAS  Google Scholar 

  • Verma N, Singh AK, Kaur P (2015) Biosensor based on ion selective electrode for detection of L-arginine in fruit juices. J Anal Chem 70(9):1111–1115

    Article  CAS  Google Scholar 

  • Vermeir S, Nicolaï BM, Verboven P, Van Gerwen P, Baeten B, Hoflack L, Vulsteke V, Lammertyn J (2007) Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal Chem 79(16):6119–6127

    Article  CAS  Google Scholar 

  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol 16(4):11

    Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wei Y, Zhu YY, Wang ML (2016) A facile surface-enhanced Raman spectroscopy detection of pesticide residues with Au nanoparticles/dragonfly wing arrays. Optik 127(22):10735–10739

    Article  CAS  Google Scholar 

  • Wu S, Li D, Wang J, Zhao Y, Dong S, Wang X (2017) Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides. Sens Actuators B Chem 238:427–433

    Article  CAS  Google Scholar 

  • Yang T, Duncan TV (2021) Challenges and potential solutions for nanosensors intended for use with foods. Nat Nanotechnol 16(3):251–265

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  Google Scholar 

  • Ye T, Yin W, Zhu N, Yuan M, Cao H, Yu J, Gou Z, Wang X, Zhu H, Reyihanguli A, Xu F (2018) Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer. Sens Actuators B Chem 254:417–423

    Article  CAS  Google Scholar 

  • Yin H, Ai S, Xu J, Shi W, Zhu L (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637(1–2):21–27

    Article  CAS  Google Scholar 

  • Zhang J, Wang C, Niu Y, Li S, Luo R (2017) Electrochemical sensor based on molecularly imprinted composite membrane of poly (o-aminothiophenol) with gold nanoparticles for sensitive determination of herbicide simazine in environmental samples. Sens Actuators B Chem 249:747–755

    Article  CAS  Google Scholar 

  • Zhang HM, Lawrimore J, Huang B, Menne MJ, Yin X, Sánchez-Lugo A, Gleason BE, Vose R, Arndt D, Rennie JJ, Williams CN (2019) Updated temperature data give a sharper view of climate trends. Eos 100(10.1029)

    Google Scholar 

  • Zhang X, Tang B, Li Y, Liu C, Jiao P, Wei Y (2021) Molecularly imprinted magnetic fluorescent nanocomposite-based sensor for selective detection of lysozyme. Nanomaterials 11(6):1575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thanks Amity University Madhya Pradesh, Dr. Aseem Chauhan, Additional President, RBEF and Chairman of AUMP Campus, Gwalior. Lt. Gen. V.K. Sharma, AVSM (Retd.), Vice Chancellor of AUMP Gwalior Campus, Gwalior, India for providing necessary facility and their valuable support and encouragement throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, P.S., Sharma, N., Singh, A., Tomar, R.S. (2022). Recent Trends in Rapid Environmental Monitoring of Toxicants Using Nanobiosensors. In: Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (eds) Nanobiosensors for Environmental Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-16106-3_19

Download citation

Publish with us

Policies and ethics