Skip to main content

Advertisement

Log in

Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) have a number of unique optical properties that are advantageous in the development of bioanalyses based on fluorescence resonance energy transfer (FRET). Researchers have used QDs as energy donors in FRET schemes for the analysis of nucleic acids, proteins, proteases, haptens, and other small molecules. This paper reviews these applications of QDs. Existing FRET technologies can potentially be improved by using QDs as energy donors instead of conventional fluorophores. Superior brightness, resistance to photobleaching, greater optimization of FRET efficiency, and/or simplified multiplexing are possible with QD donors. The applicability of the Förster formalism to QDs and the feasibility of using QDs as energy acceptors are also reviewed.

A ligand capped core/shell quantum dot acting as energy donor in a FRET process with aconjugated Cy3 labeled oligonucleotide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruchez M, Morronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  2. Chan WCW, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  3. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) Curr Opin Biotechnol 16:63–72

    Article  CAS  Google Scholar 

  4. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  5. Parak WJ, Pellegrino T, Plank C (2005) Nanotechnology 16:R9–R25

    Article  CAS  Google Scholar 

  6. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Biomaterials 27:1679–1687

    Article  CAS  Google Scholar 

  7. Smith AM, Gao X, Nie S (2004) Photochem Photobiol 80:377–385

    CAS  Google Scholar 

  8. Epstein JR, Biran I, Walt DR (2002) Anal Chim Acta 469:3–36

    Article  CAS  Google Scholar 

  9. Yang CYJ, Medley CD, Tan WH (2005) Curr Pharm Biotechnol 6:445–452

    Article  CAS  Google Scholar 

  10. Tan WH, Wang KM, Drake TJ (2004) Curr Opin Chem Biol 8:547–553

    Article  CAS  Google Scholar 

  11. Ranasinghe RT, Brown T (2005) Chem Commun 5487–5502

  12. Marras SAE, Tyagi S, Kramer FR (2006) Clin Chim Acta 363:48–60

    Article  CAS  Google Scholar 

  13. Solinas A, Brown LJ, McKeen C, Mellor JM, Nicol J, Thelwell N, Brown T (2001) Nucleic Acids Res 29:e96

    Article  CAS  Google Scholar 

  14. Ohiro Y, Arai R, Ueda H, Nagamune T (2002) Anal Chem 74:5786–5792

    Article  CAS  Google Scholar 

  15. Pulli T, Höyhtyä M, Söderlund H, Takkinen K (2005) Anal Chem 77:2637–2642

    Article  CAS  Google Scholar 

  16. Heyduk T (2002) Curr Opin Biotechnol 12:292–296

    Article  Google Scholar 

  17. Zal T, Gascoigne RJ (2004) Curr Opin Immun 16:418–427

    Article  CAS  Google Scholar 

  18. Cheung HC (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum, New York

  19. Elangovan M, Day RN, Periasamy A (2005) J Microsc 2002:3–14

    Google Scholar 

  20. Jares-Erijman EA, Jovin TM (2003) Nat Biotechnol 21:1387–1395

    Article  CAS  Google Scholar 

  21. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310

    Article  CAS  Google Scholar 

  22. Scholes GD, Andrews DL (2005) Phys Rev B 72:125331

    Article  Google Scholar 

  23. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  24. Hildebrandt N, Charbonnière LJ, Beck M, Ziessel RF, Löhmannsröben H-G (2005) Angew Chem Int Ed 44:7612–7615

    Article  CAS  Google Scholar 

  25. Wang S, Mamedova N, Kotov NA, Chen W, Studer J (2002) Nano Lett 2:817–822

    Article  CAS  Google Scholar 

  26. Zhang C-Y, Yeh HC, Kuroki MT, Wang TH (2005) Nat Mater 4:826–831

    Article  Google Scholar 

  27. Algar WR, Krull UJ (2007) Anal Chim Acta 581:193–201

    Article  CAS  Google Scholar 

  28. Kim JH, Morikis D, Ozkan M (2004) Sens Actuators B 102:315–319

    Article  Google Scholar 

  29. Kim JH, Chaudhary S, Ozkan M (2007) Nanotechnology 18:195105

    Article  Google Scholar 

  30. Algar WR, Krull UJ (2006) Langmuir 22:11346–11352

    Article  CAS  Google Scholar 

  31. Mattoussi H, Kuno MK, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  32. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  33. Peng H, Zhang L, Kjällman THM, Soeller C, Travas-Sejdic J (2007) J Am Chem Soc 129:3048–3049

    Article  CAS  Google Scholar 

  34. Massey M, Algar WR, Krull UJ (2006) Anal Chim Acta 568:181–189

    Article  CAS  Google Scholar 

  35. Hermann T, Patel DJ (2000) Science 287:820–825

    Article  CAS  Google Scholar 

  36. Famulok M, Mayer G, Blind M (2000) Acc Chem Res 33:591–599

    Article  CAS  Google Scholar 

  37. Levy M, Carter SF, Ellington AD (2005) ChemBioChem 6:2163–2166

    Article  CAS  Google Scholar 

  38. Nutiu R, Li Y (2003) J Am Chem Soc 125:4771–4778

    Article  CAS  Google Scholar 

  39. Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Biochem Biophys Res Commun 334:1317–1321

    Article  CAS  Google Scholar 

  40. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Nat Mater 5:581–589

    Article  CAS  Google Scholar 

  41. Pathak S, Davidson MC, Silva GA (2007) Nano Lett 7:1389–1845

    Article  Google Scholar 

  42. Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HY, Deschamps JR, Lassman ME, Mattoussi H (2005) J Am Chem Soc 127:6744–6751

    Article  CAS  Google Scholar 

  43. Nikiforov TT, Beechem JM (2006) Anal Biochem 357:68–76

    Article  CAS  Google Scholar 

  44. Wei Q, Lee M, Yu X, Lee EK, Seong GH, Choo J, Cho YW (2006) Anal Biochem 358:31–37

    Article  CAS  Google Scholar 

  45. Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR (2004) Proc Natl Acad Sci USA 101:9612–9617

    Article  CAS  Google Scholar 

  46. Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H (2005) Adv Mat 17:2450–2455

    Article  CAS  Google Scholar 

  47. Medintz IL, Sapsford KE, Clapp AR, Pons T, Higashiya S, Welch JT, Mattoussi H (2006) J Phys Chem B 110:10683–10690

    Article  CAS  Google Scholar 

  48. Sapsford KE, Medintz IL, Golden JP, Deschamps JR, Uyeda HT, Mattoussi H (2004) Langmuir 20:7720–7728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of their research by the Natural Sciences and Engineering Research Council of Canada (NSERC). W.R.A. is also grateful to NSERC for provision of a graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich J. Krull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algar, W.R., Krull, U.J. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391, 1609–1618 (2008). https://doi.org/10.1007/s00216-007-1703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1703-3

Keywords

Navigation