Skip to main content

The Role of Diagnostic Microdevices in the Fight Against Tuberculosis

  • Chapter
  • First Online:
Tuberculosis

Part of the book series: Integrated Science ((IS,volume 11))

  • 668 Accesses

Summary

The high incidence and mortality associated with Mycobacterium tuberculosis (M. tb) bring forward the necessity of rapid and accurate diagnosis. Microfluidic techniques present characteristics able to cover the gaps between current assays and clinical needs for disease management. Moreover, they bring a cost- and time-effective Point of Care (PoC) diagnosis methodology, with multiples advantages of special importance in countries with low income and resources. The devices can be classified according to the diagnosis method, which can be based on the detection of bacterial elements (such as enzymes or antibodies) or on genotyping through amplification of the nucleic acid information. In the latter case, there are devices capable of providing information about the drug resistance of the particular strains, while others provide just a “yes/no” answer, differentiating M. tb from other mycobacterial infections. The main goal attempted by all the devices remains to achieve portability and ease of use required for a PoC device, besides the required precision.

Graphical Abstract

The role of microfluidics in tuberculosis (TB) diagnosis. Microfluidic devices can be used to diagnose TB as well as to detect drug-resistant strains. These devices are based on detecting bacterial elements or on genotyping the bacterial nucleic acids.

As any doctor can tell you, the most crucial step toward healing is having the right diagnosis. If the disease is precisely identified, a good resolution is far more likely. Conversely, a bad diagnosis usually means a bad outcome, no matter how skilled the physician.

Andrew Weil

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dual-targeting fluorogenic probe with a BlaC sensing unit, a fluorescent reporter and an enzymatic signal trapping unit.

  2. 2.

    FlowJo v10.

References

  1. World Health Organization (2019) Global tuberculosis report 2019

    Google Scholar 

  2. Jilani TN, Avula A, Zafar Gondal A, Siddiqui AH (2020) Active tuberculosis. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  3. Davies PDO, Pai M (2008) The diagnosis and misdiagnosis of tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis 12:1226–1234

    CAS  Google Scholar 

  4. Mani V, Wang S, Inci F, De Libero G, Singhal A, Demirci U (2014) Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care. Adv Drug Deliv Rev 78:105–117. https://doi.org/10.1016/j.addr.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Inci F, De Libero G, Singhal A, Demirci U (2013) Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv 31:438–449. https://doi.org/10.1016/j.biotechadv.2013.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dheda K, Ruhwald M, Theron G, Peter J, Yam WC (2013) Point-of-care diagnosis of tuberculosis: past, present and future. Respirol Carlton Vic 18:217–232. https://doi.org/10.1111/resp.12022

    Article  Google Scholar 

  7. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T Peer-Rev J Formul Manag 40:277–283

    Google Scholar 

  8. Eker B, Ortmann J, Migliori GB, Sotgiu G, Muetterlein R, Centis R, Hoffman H, Kirsten D, Schaberg T, Ruesch-Gerdes S, Lange C (2008) Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg Infect Dis 14:1700–1706. https://doi.org/10.3201/eid1411.080729

    Article  PubMed  PubMed Central  Google Scholar 

  9. Young DB, Perkins MD, Duncan K, Barry CE 3rd (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118:1255–1265. https://doi.org/10.1172/JCI34614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blöndal K (2007) Barriers to reaching the targets for tuberculosis control: multidrug-resistant tuberculosis. Bull World Health Organ 85:387–90; discussion 391–394. https://doi.org/10.2471/06.035345

  11. Yang TW, Park HO, Jang HN, Yang JH, Kim SH, Moon SH, Buyn JH, Lee CE, Kim JW, Kang DH (2017) Side effects associated with the treatment of multidrug-resistant tuberculosis at a tuberculosis referral hospital in South Korea: a retrospective study. Medicine (Baltimore) 96:e7482. https://doi.org/10.1097/MD.0000000000007482

    Article  PubMed  Google Scholar 

  12. Ahn CH, Choi J-W (2010) Microfluidic devices and their applications to lab-on-a-chip. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin, Heidelberg, pp 503–530

    Chapter  Google Scholar 

  13. Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, Nam Y, Brickner HT, Wang A, Krulevitch P (2000) Microdevices in medicine. Annu Rev Biomed Eng 2:551–576. https://doi.org/10.1146/annurev.bioeng.2.1.551

    Article  CAS  PubMed  Google Scholar 

  14. Hauck TS, Giri S, Gao Y, Chan WCW (2010) Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev 62:438–448. https://doi.org/10.1016/j.addr.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Muñoz-Barrutia A, Ripoll J (2019) Applications of light-sheet microscopy in microdevices. Front Neuroanat 13:1. https://doi.org/10.3389/fnana.2019.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie H, Mire J, Kong Y, Chang M, Hassounah HA, Thornton CN, Sacchettini JC, Cirillo JD, Rao J (2012) Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat Chem 4:802–809. https://doi.org/10.1038/nchem.1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sule P, Tilvawala R, Mustapha T, Hassounah H, Noormohamed A, Kundu S,Graviss EA, Walkup GK, Kong Y, Cirillo JD (2019) Rapid tuberculosis diagnosis using reporter enzyme fluorescence. J Clin Microbiol 57. https://doi.org/10.1128/JCM.01462-19

  18. Lyu F, Xu M, Cheng Y, Xie J, Rao J, Tang SK (2015) Quantitative detection of cells expressing BlaC using droplet-based microfluidics for use in the diagnosis of tuberculosis. Biomicrofluidics 9:044120. https://doi.org/10.1063/1.4928879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng Y, Xie J, Lee K-H, Gaur RL, Song A, Dai T, Ren H, Wu J, Sun Z, Banaei N, Akin D, Rao J (2018) Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aar4470

  20. Darwish IA (2006) Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci IJBS 2:217–235

    CAS  PubMed  Google Scholar 

  21. Jing W, Jiang X, Zhao W, Liu S, Cheng X, Sui G (2014) Microfluidic platform for direct capture and analysis of airborne Mycobacterium tuberculosis. Anal Chem 86:5815–5821. https://doi.org/10.1021/ac500578h

    Article  CAS  PubMed  Google Scholar 

  22. Whitelaw A, Sturm W (2009) Microbiological testing for Mycobacterium tuberculosis. Tuberc Compr Clin Ref 1st Ed 169–178

    Google Scholar 

  23. Chan ED, Reves R, Belisle JT, Brennan PJ, Hahn WE (2000) Diagnosis of tuberculosis by a visually detectable immunoassay for lipoarabinomannan. Am J Respir Crit Care Med 161:1713–1719. https://doi.org/10.1164/ajrccm.161.5.9908125

    Article  CAS  PubMed  Google Scholar 

  24. Songkhla MN, Tantipong H, Tongsai H, Angkasekwinai N (2019) Lateral flow urine lipoarabinomannan assay for diagnosis of active tuberculosis in adults with human immunodeficiency virus infection: a prospective cohort study. Open Forum Infect Dis 6:ofz132. https://doi.org/10.1093/ofid/ofz132

  25. Sigal GB, Pinter A, Lowary TL, Kawasaki M, Li A, Mathew A, Tsionsky RB, Plisova T, Shen K, Katsuragi K, Choudhary A, Honnen WJ, Nahid P, Denkinger CM, Broger T (2018) A novel sensitive immunoassay targeting the 5-methylthio-d-xylofuranose-lipoarabinomannan epitope meets the WHO’s performance target for tuberculosis diagnosis. J Clin Microbiol 56. https://doi.org/10.1128/JCM.01338-18

  26. Ramirez-Priego P, Martens D, Elamin AA, Soetaert P, Van Roy W, Vos R, Anton B, Bockstaele R, Becker H, Singh M, Bienstman P, Lechuga LM (2018) Label-free and real-time detection of tuberculosis in human urine samples using a nanophotonic point-of-care platform. ACS Sens 3:2079–2086. https://doi.org/10.1021/acssensors.8b00393

    Article  CAS  PubMed  Google Scholar 

  27. Peralta G, Barry P, Pascopella L (2016) Use of nucleic acid amplification tests in tuberculosis patients in California, 2010–2013. Open Forum Infect Dis 3:ofw230. https://doi.org/10.1093/ofid/ofw230

  28. Eddabra R, Ait Benhassou H (2018) Rapid molecular assays for detection of tuberculosis. Pneumonia Nathan Qld 10:4. https://doi.org/10.1186/s41479-018-0049-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Massung RF (2005) DNA amplification: current technologies and applications. Emerg Infect Dis 11:357–357. https://doi.org/10.3201/eid1102.041049

    Article  PubMed Central  Google Scholar 

  30. Zeka AN, Tasbakan S, Cavusoglu C (2011) Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 49:4138–4141. https://doi.org/10.1128/JCM.05434-11

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saeed M, Ahmad M, Iram S, Riaz S, Akhtar M, Aslam M (2017) GeneXpert technology. A breakthrough for the diagnosis of tuberculous pericarditis and pleuritis in less than 2 hours. Saudi Med J 38:699–705. https://doi.org/10.15537/smj.2017.7.17694

  32. Mangayarkarasi V, Sneka P, Sujith R, Jayaprakash J (2019) Ergonomic diagnostic tool based on chip mini RT-PCR for diagnosis of pulmonary and extra pulmonary tuberculosis. J Pure Appl Microbiol 13:1185–1190. https://doi.org/10.22207/JPAM.13.2.58

  33. Nikam C, Kazi M, Nair C, Jaggannath M, Manoj M, Vinaya R, Shetty A, Rodrigues C (2014) Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int J Mycobacteriology 3:205–210. https://doi.org/10.1016/j.ijmyco.2014.04.003

    Article  Google Scholar 

  34. Rafati A, Gill P (2014) Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim Acta 182:523–530. https://doi.org/10.1007/s00604-014-1354-y

    Article  CAS  Google Scholar 

  35. Luo J, Fang X, Ye D, Li H, Chen H, Zhang S, Kong J (2014) A real-time microfluidic multiplex electrochemical loop-mediated isothermal amplification chip for differentiating bacteria. Biosens Bioelectron 60C:84–91. https://doi.org/10.1016/j.bios.2014.03.073

    Article  CAS  Google Scholar 

  36. Yang H, Chen Z, Cao X, Li Z, Stavrakis S, Choo J, DeMello AJ, Howes PD, He N (2018) A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal Bioanal Chem 410. https://doi.org/10.1007/s00216-018-1335-9

  37. Versiani A, Andrade L, Martins E, Scalzo S, Geraldo JM, Chaves CR, Ferreira DC, Ladeira M, Guatimosim S, Ladeira L, da Fonseca FG (2016) Gold nanoparticles and their applications in biomedicine. Future Virol 13. https://doi.org/10.2217/fvl-2015-0010

  38. Costa P, Amaro A, Botelho A, Inácio J, Baptista PV (2010) Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 16:1464–1469. https://doi.org/10.1111/j.1469-0691.2009.03120.x

    Article  CAS  Google Scholar 

  39. Bernacka-Wojcik I, Lopes P, Vaz AC, Veigas B, Wojcik PJ, Simões P, Barata D, Fortunato E, Baptista PV, Aguas H, Martins R (2013) Bio-microfluidic platform for gold nanoprobe based DNA detection–application to Mycobacterium tuberculosis. Biosens Bioelectron 48:87–93. https://doi.org/10.1016/j.bios.2013.03.079

    Article  CAS  PubMed  Google Scholar 

  40. Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista JV, Martins R, Inácio J, Fortunato E (2014) A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 25:094006. https://doi.org/10.1088/0957-4484/25/9/094006

    Article  CAS  PubMed  Google Scholar 

  41. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950. https://doi.org/10.1007/s00216-007-1768-z

    Article  CAS  PubMed  Google Scholar 

  42. Tsai T-T, Huang C-Y, Chen C-A, Shen SW, Wang MC, Cheng CM, Chen CF (2017) Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sens 2:1345–1354. https://doi.org/10.1021/acssensors.7b00450

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510. https://doi.org/10.3390/s150510481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhusal N, Shrestha S, Pote N, Alocilja EC (2018) Nanoparticle-based biosensing of tuberculosis, an affordable and practical alternative to current methods. Biosensors 9. https://doi.org/10.3390/bios9010001

  45. Gupta AK, Singh A, Singh S (2019) Diagnosis of tuberculosis: nanodiagnostics approaches. NanoBioMed 261–283. https://doi.org/10.1007/978-981-32-9898-9_11

  46. Zribi B, Roy E, Pallandre A, Chebil S, Koubaa M, Mejri N, Gomez HM, Sola C, Horri-Youssoufi H, Haghiri-Gosnet AM (2016) A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics 10:014115. https://doi.org/10.1063/1.4940887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM (2019) Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 11:45. https://doi.org/10.1186/s13073-019-0660-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Linger Y, Knickerbocker C, Sipes D, Golova J, Franke M, Calderon R, Lecca L, Thakore HR, Qu P, Kukhtin A, Murray MB, Cooney C, Chandler D (2018) Genotyping multidrug-resistant Mycobacterium tuberculosis from primary sputum and decontaminated sediment with an integrated microfluidic amplification microarray test. J Clin Microbiol 56:e01652-17. https://doi.org/10.1128/JCM.01652-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pholwat S, Liu J, Stroup S, Gratz J, Banu S, Mazidur Rahman SM, Ferdous SS, Foongladda S, Boonlert D, Ogarkov O, Zhdanova S, Kibiki G, Heysell S, Houpt E (2015) Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. mBio 6:e02273. https://doi.org/10.1128/mBio.02273-14

  50. Kim T-H, Sunkara V, Park J, Kim CJ, Woo HK, Cho YK (2016) A lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab Chip 16:3741–3749. https://doi.org/10.1039/C6LC00629A

    Article  CAS  PubMed  Google Scholar 

  51. Law ILG, Loo JFC, Kwok HC, Yeung HY, Leung CHH, Hui M, Wu SY, Chan SH, Kwan YW, HoHP KSK (2018) Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by recombinase polymerase amplification. Anal Biochem 544:98–107. https://doi.org/10.1016/j.ab.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  52. Minero A, Bagnasco M, Fock J, Tian B, Garbarino B, Hansen MF (2020) Automated on-chip analysis of tuberculosis drug-resistance mutation with integrated DNA ligation and amplification. Anal Bioanal Chem 412:2705–2710. https://doi.org/10.1007/s00216-020-02568-x

    Article  CAS  PubMed  Google Scholar 

  53. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17:351–366. https://doi.org/10.1080/14737159.2017.1285228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kukhtin AC, Sebastian T, Golova J, Perov A, Knickerbocker C, Linger Y, Bueno A, Qu P, Villanueva M, Holmberg RC, Chandler DP, Cooney CG (2019) Lab-on-a-film disposable for genotyping multidrug-resistant Mycobacterium tuberculosis from sputum extracts. Lab Chip 19:1217–1225. https://doi.org/10.1039/C8LC01404C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kukhtin AV, Norville R, Bueno A, Qu P, Parrish N, Murray M, Chandler DP, Holmberg RC, Cooney CG (2020) A benchtop automated sputum-to-genotype system using a lab-on-a-film assembly for detection of multidrug-resistant Mycobacterium tuberculosis. Anal Chem 92:5311–5318. https://doi.org/10.1021/acs.analchem.9b05853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has received funding from the project ERA4TB, Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 853989. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and Global Alliance for TB Drug Development nonprofit organization, Bill & Melinda Gates Foundation, and the University of Dundee. This work is supported in part by Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación, under grant PID2019-109820RB-I00, MCIN/AEI /https://doi.org/10.13039/501100011033/, cofinanced by European Regional Development Fund (ERDF), “A way of making Europe.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arrate Muñoz-Barrutia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cañadas-Ortega, M., Gómez-Cruz, C., Vaquero, J.J., Muñoz-Barrutia, A. (2023). The Role of Diagnostic Microdevices in the Fight Against Tuberculosis. In: Rezaei, N. (eds) Tuberculosis. Integrated Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-15955-8_7

Download citation

Publish with us

Policies and ethics