Skip to main content

Conditioned Variational Autoencoder for Top-N Item Recommendation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

State-of-the-art recommender systems (RSs) generally try to improve the overall recommendation quality. However, users usually tend to explicitly filter the item set based on available categories, e.g., smartphone brands, movie genres. For this reason, an RS that can make this step automatically is likely to increase the user’s experience. This paper proposes a Conditioned Variational Autoencoder (C-VAE) for constrained top-N item recommendation where the recommended items must satisfy a given condition. The proposed model architecture is similar to a standard VAE in which a condition vector is fed into the encoder. The constrained ranking is learned during training thanks to a new reconstruction loss that takes the input condition into account. We show that our model generalizes the state-of-the-art Mult-VAE collaborative filtering model. Experimental results underline the potential of C-VAE in providing accurate recommendations under constraints. Finally, the performed analyses suggest that C-VAE can be used in other recommendation scenarios, such as context-aware recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/20m/.

  2. 2.

    https://www.yelp.com/dataset.

  3. 3.

    https://www.kaggle.com/netflix-inc/netflix-prize-data.

  4. 4.

    https://www.imdb.com/.

  5. 5.

    https://github.com/tommasocarraro/netflix-prize-with-genres.

  6. 6.

    https://github.com/makgyver/rectorch.

References

  1. Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_6

    Chapter  Google Scholar 

  2. Askari, B., Szlichta, J., Salehi-Abari, A.: Variational autoencoders for top-k recommendation with implicit feedback. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 2061–2065 (2021)

    Google Scholar 

  3. Carraro, T., Polato, M., Aiolli, F.: A look inside the black-box: towards the interpretability of conditioned variational autoencoder for collaborative filtering. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 233–236 (2020)

    Google Scholar 

  4. Chae, D.K., Kang, J.S., Kim, S.W., Lee, J.T.: Cfgan: a generic collaborative filtering framework based on generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. CIKM 2018, New York, NY, USA, pp. 137–146. Association for Computing Machinery (2018). https://doi.org/10.1145/3269206.3271743

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  6. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web. WWW 2017. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 173–182 (2017). https://doi.org/10.1145/3038912.3052569

  7. Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  8. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272 (2008)

    Google Scholar 

  9. Iqbal, M., Aryafar, K., Anderton, T.: Style conditioned recommendations. In: Proceedings of the 13th ACM Conference on Recommender Systems. RecSys 2019, New York, NY, USA, pp. 128–136. Association for Computing Machinery (2019). https://doi.org/10.1145/3298689.3347007

  10. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014 (2014)

    Google Scholar 

  11. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_5

    Chapter  Google Scholar 

  12. Li, X., She, J.: Collaborative variational autoencoder for recommender systems. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2017, New York, NY, USA, pp. 305–314. Association for Computing Machinery (2017). https://doi.org/10.1145/3097983.3098077

  13. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference. WWW 2018. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 689–698 (2018). https://doi.org/10.1145/3178876.3186150

  14. Ning, X., Karypis, G.: Slim: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506 (2011)

    Google Scholar 

  15. Pagnoni, A., Liu, K., Li, S.: Conditional variational autoencoder for neural machine translation. ArXiv abs/1812.04405 (2018)

    Google Scholar 

  16. Polato, M., Aiolli, F.: Boolean kernels for collaborative filtering in top-n item recommendation. Neurocomput. 286(C), 214–225 (2018). https://doi.org/10.1016/j.neucom.2018.01.057

    Article  Google Scholar 

  17. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010)

    Google Scholar 

  18. Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook, 2nd edn. Springer, New York (2015). https://doi.org/10.1007/978-1-4899-7637-6

    Book  MATH  Google Scholar 

  19. Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 528–536 (2020)

    Google Scholar 

  20. Spagnuolo, C., et al.: Analyzing, exploring, and visualizing complex networks via hypergraphs using simplehypergraphs.jl. Internet Mathematics, April 2020. https://doi.org/10.24166/im.01.2020

  21. Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference. WWW 2019, New York, NY, USA, pp. 3251–3257. Association for Computing Machinery (2019). https://doi.org/10.1145/3308558.3313710

  22. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009 (2009). https://doi.org/10.1155/2009/421425

  23. Wang, J., et al.: Irgan: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2017, New York, NY, USA, pp. 515–524, Association for Computing Machinery (2017). https://doi.org/10.1145/3077136.3080786

  24. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. WSDM 2016, New York, NY, USA, pp. 153–162. Association for Computing Machinery (2016). https://doi.org/10.1145/2835776.2835837

  25. Wu, Y., Macdonald, C., Ounis, I.: A hybrid conditional variational autoencoder model for personalised top-n recommendation. In: Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval, pp. 89–96 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Carraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carraro, T., Polato, M., Bergamin, L., Aiolli, F. (2022). Conditioned Variational Autoencoder for Top-N Item Recommendation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15931-2_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15930-5

  • Online ISBN: 978-3-031-15931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics