Skip to main content

Applications of Some Nanoparticles and Responses of Medicinal and Aromatic Plants Under Stress Conditions

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution

Abstract

Plants have been the main source of livelihood for human beings since prehistoric times, in the form of wild-collecting or agricultural activities. With the increases in human population and their activities, as well as global climatic changes, it might not be possible to maintain the sustainability of crop production without any input of fertilizers. Of the most challenging situations, biotic and abiotic stress factors are the most notable to be investigated due to their hazardous impacts, in an extent of 50% loss in crop productivity. In addition to conventional approaches, recent studies have been oriented on the uses of new-engineered nanomaterials on sustainable crop productivity. In this regard, out of the nanomaterials employed, copper nanoparticles, titanium oxide nanoparticles, silver nanoparticles, and silicon dioxide nanoparticles are the most examined nanoparticles in the relevant fields. Of the stress factors, drought and salinity are the most investigated abiotic stresses. The current chapter reviews the stress types and their impacts on agronomic traits and the secondary metabolites (terpenoids and phenolics) of medicinal and aromatic plants. Furthermore, the relevant studies were retrieved, visualized, and correlated using VOSviewer-aided bibliometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd EL-Azim, W. M., & Ahmed, S. (2009). The effect of salinity and cutting date on growth and chemical constituents of Achillea fragrantissima Forssk, under Ras Sudr conditions. Research Journal of Agriculture and Biological Sciences, 5(6), 1121–1129.

    CAS  Google Scholar 

  • Abdel Latef, A. A. H., Srivastava, A. K., El-sadek, M. S. A., Kordrostami, M., & Tran, L. S. P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development, 29(4), 1065–1073.

    Article  Google Scholar 

  • Abou El-Magd, M. M., Zaki, M. F., & Abou-Hussein, S. D. (2008). Effect of organic manure and different levels of saline irrigation water on growth, green yield and chemical content of sweet fennel. Australian Journal of Basic and Applied Sciences, 2, 90–98.

    CAS  Google Scholar 

  • Abou-Zeid, H., & Ismail, G. (2018). The Role of Priming with Biosynthesized Silver Nanoparticles in the Response of Triticum aestivum L to Salt Stress. Egyptian Journal of Botany, 58(1), 73–85.

    Google Scholar 

  • Ahmed, F., Javed, B., Razzaq, A., & Mashwani, Z. U. R. (2021). Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnology, 15(1), 68–78.

    Article  Google Scholar 

  • Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2020). Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules, 10, 43.

    Article  CAS  Google Scholar 

  • Ali, M. A., Mosa, K. A., El-Keblawy, A., & Alawadhi, H. (2019). Exogenous production of silver nanoparticles by Tephrosia apollinea living plants under drought stress and their antimicrobial activities. Nanomaterials, 9(12), 1716.

    Article  CAS  Google Scholar 

  • Ali, R. M., Abbas, H. M., & Kamal, R. K. (2007a). The effects of treatment with polyamines on dry matter, oil and flavonoid contents in salinity stressed chamomile and sweet marjoram. Plant, Soil and Environment, 53, 529–543.

    Article  CAS  Google Scholar 

  • Ali, R. M., Abbas, H. M., & Kamal, R. K. (2007b). The effects of treatment with polyaminesondry matter, oil and flavonoid contents in salinity stressed chamomile and sweet marjoram. Plant, Soil and Environment, 53, 529–543.

    Article  CAS  Google Scholar 

  • Amin, I. S. (1994). Effect of different levels of salinity on the growth and volatile oil constituents of Foeniculum vulgare L. (sweet fennel). Egyptian. Journal of Applied Sciences, 9(4), 129–142.

    Google Scholar 

  • Anitha, S., & Kumari, B. D. R. (2006). Stimulation of reserpine biosynthesis in the callus of Rauvolfia tetraphyla L. by precursor feeding. African Journal of Biotechnology, 5, 659–661.

    CAS  Google Scholar 

  • Aqaei, P., Weisany, W., Diyanat, M., Razmi, J., & Struik, P. C. (2020). Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. Journal of Plant Nutrition, 43(9), 1205–1216.

    Article  CAS  Google Scholar 

  • Arechavaleta, M., Bacon, C. W., Plattner, R. D., Hoveland, C. S., & Radcliffe, D. E. (1992). Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Applied and Environmental Microbiology, 58, 857–861.

    Article  CAS  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2015). Melatonin: Synthesis from tryptophan and its role in higher plant. Amino Acids in Higher Plants, 390–435

    Google Scholar 

  • Ashkavand, P., Zarafshar, M., Tabari, M., Mirzaie, J., Nikpour, A., Bordbar, S. K., et al. (2018). Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica, 53(2), 207–219.

    Article  Google Scholar 

  • Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. Plant metabolites and regulation under environmental stress, 153–167

    Google Scholar 

  • Ashraf, M., & Orooj, A. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi L. Sprague). Journal of Arid Environment, 64, 209–220.

    Article  Google Scholar 

  • Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246.

    Article  CAS  Google Scholar 

  • Aziz, E. E., Al-Amier, H., & Craker, L. E. (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of Herbs, Spices & Medicinal Plants, 14(1 & 2), 77–87.

    Article  CAS  Google Scholar 

  • Baatour, O. R., Kaddour, W., Wannes, A., Lachaal, M., & Marzouk, B. (2010). Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiologiae Plantarum, 32, 45–51.

    Article  CAS  Google Scholar 

  • Babaee, K., Dehaghi, M. A., Sanavi, S. A. M. M., & Jabbari, R. (2010). Water deficit effect on morphology, prolin content and thymol percentage of Thyme (Thymus vulgaris L.). Iranian Journal of Medicinal and Aromatic Plants, 2, 239–251. (Persian).

    Google Scholar 

  • Baghalian, K., Haghiry, A., Naghavi, M. R., & Mohammadi, A. (2008). Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Horticulturae, 116, 437–441.

    Article  CAS  Google Scholar 

  • Baher, Z. F., Mirza, M., Ghorbanli, M., & Bagher Rezaii, M. (2002). The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal, 17(4), 275–277.

    Google Scholar 

  • Bahreininejad, B., Razmjoo, J., & Mirza, M. (2013). Influence of water stress on morpho-physiological and phytochemical traits in Thymus daenensis. International Journal of Plant Production, 7(1), 151–166.

    Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2017). Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Genetics. https://doi.org/10.1016/j.plgene.2017.05.011. [Epub ahead of print].

  • Basavaraju, T. B., & Nanjappa, H. V. (2011). Yield, quality and economics of medicinal and aromatic crops as intercrops in coconut garden. Mysore Journal of Agricultural Sciences, 45(1), 74–82.

    Google Scholar 

  • Bejarano, L., Mignolet, E., Devaux, A., Espinola, N., Carrasco, E., & Larondelle, Y. (2000). Glycoalkaloids in potato tubers: The effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. Journal of the Science of Food and Agriculture, 80 (pg, 2096–2100.

    Article  Google Scholar 

  • Bekhradi, F., Delshad, M., Marín, A., Luna, M. C., Garrido, Y., Kashi, A., ... & Gil, M. I. (2015). Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Horticulture, Environment, and Biotechnology, 56(6), 777–785.

    Google Scholar 

  • Belaqziz, R., Romane, A., & Abbad, A. (2009). Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus maroccanus Ball.). The Journal of Applied Sciences Research, 5(7), 858–863.

    CAS  Google Scholar 

  • Belesky, D. P., & Hill, N. S. (1997). Defoliation and leaf age influence on ergot alkaloids in tall fescue. Annals of Botany, 79, 259–264.

    Article  CAS  Google Scholar 

  • Ben Taarit, M. K., Msaada, K., Hosni, K., & M.Hammami M, Kchouk E, Marzouk B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30(3), 333–337.

    Article  CAS  Google Scholar 

  • Bhandari, S., Harsh, N. S. K., Sharma, A. K., Mao, L. P., & Thakur, S. (2014). A database of diseases of medicinal plants in Uttarakhand. Indian Forester, 140, 518–527.

    Google Scholar 

  • Bhat, M. A., Ahmad, S., Aslam, J., Mujıb, A., & Ahmooduzzfar, M. (2008). Salinity Stress Enhances Production of Solasodine in Solanum nigrum L. Chemical and Pharmaceutical Bulletin, 56(1), 17–21.

    Article  CAS  Google Scholar 

  • Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. (2010). Bioactivities of black cumin essential oil and its main terpenes from Tunisia. The South African Journal of Botany, 76, 210–216.

    Article  CAS  Google Scholar 

  • Brachet, J., & Cosson, L. (1986, May). Changes in the Total Alkaloid Content of Datura innoxia Mill. Subjected to Salt Stress. Journal of Experimental Botany, 37(5), 650–656. https://doi.org/10.1093/jxb/37.5.650

    Article  CAS  Google Scholar 

  • Çakir, R., & Çebi, U. (2010). The effect of irrigation scheduling and water stress on the maturity and chemical composition of Virginia tobacco leaf. Field Crops Research, 119, 269–276.

    Article  Google Scholar 

  • Çamlıca, M., & Yaldız, G. (2017). Effect of salt stress on seed germination, shoot and root length in basil (Ocimum basilicum). International Journal of Secondary Metabolite, 4(3), 69–76.

    Article  Google Scholar 

  • Çamlıca, M., Yaldız, G., Özen, F., Başol, A., & Aşkın, H. (2019). Effects of selenium applications on salt stress in sage and mountain tea.Turkish Journal of Agriculture-Food. Science and Technology, 7(sp2), 29–35. https://doi.org/10.24925/turjaf.v7isp2.29-35.3098

    Article  Google Scholar 

  • Celik, E., Durmus, A., Adizel, O., & Uyar, H. N. (2021). A bibliometric analysis: What do we know about metals (loids) accumulation in wild birds? Environmental Science and Pollution Research, 28(8), 10302–10334.

    Article  CAS  Google Scholar 

  • Celikcan, F., Kocak, M. Z., & Kulak, M. (2021). Vermicompost applications on growth, nutrition uptake and secondary metabolites of Ocimum basilicum L. under water stress: A comprehensive analysis. Industrial Crops and Products, 171, 113973.

    Article  CAS  Google Scholar 

  • Charles, D. J., Joly, R. J., & Simon, J. E. (1990). Effect of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry, 29, 2837–2840.

    Article  CAS  Google Scholar 

  • Chartzoulakis, K., & Klapaki, G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86, 247–260.

    Article  CAS  Google Scholar 

  • Chibber, S., Ansari, S. A., & Satar, R. (2013). New vision to CuO, ZnO, and TiO 2 nanoparticles: Their outcome and effects. Journal of Nanoparticle Research, 15(4), 1–13.

    Article  Google Scholar 

  • Cho, Y., Njitiv, N., Chen, X., Lightfood, D. A., & Wood, A. J. (2003). Trigonelline concentration in field-grown soybean in response to irrigation. Biology Plant, 46 (pg, 405–410.

    Article  Google Scholar 

  • Cik, J. K., Klejdus, B., Hedbavny, J., & Bačkor, M. (2009). Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology, 18(5), 544–554.

    Article  Google Scholar 

  • Clé, C., Hill, L. M., Niggeweg, R., Martin, C. R., Guisez, Y., Prinsen, E., & Jansen, M. A. (2008). Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 69, 2149–2156. https://doi.org/10.1016/j.phytochem.2008.04.024

    Article  CAS  Google Scholar 

  • Cumplido-Nájera, C. F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82–89.

    Article  Google Scholar 

  • Dar, S. A. (2012). Screening of brinjal genotypes/verities against brinjal shoot and fruit borer. [Thesis] Division of Entomology. SKUAST-K, Srinager, Kashmir

    Google Scholar 

  • de Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43, 241–248.

    Article  Google Scholar 

  • de la Rosa, G., Vázquez-Núñez, E., Molina-Guerrero, C., Serafín-Muñoz, A. H., & Vera-Reyes, I. (2021). Interactions of nanomaterials and plants at the cellular level: Current knowledge and relevant gaps. Nanotechnology for Environmental Engineering, 6(1), 1–19.

    Google Scholar 

  • Delitala, I.-F., Gessa, C., & Solinas, V. (1986). Water stress and flexibility of phenolic metabolism in Thymus capitatus. Fitoterapia, 57, 401–408.

    CAS  Google Scholar 

  • Dixon, R. A., & Paiva, N. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.

    Article  CAS  Google Scholar 

  • Dmitrieva, V. A., Tyutereva, E. V., & Voitsekhovskaja, O. V. (2020). Singlet oxygen in plants: Generation, detection, and signaling roles. International Journal of Molecular Sciences, 21, 3237. [CrossRef] [PubMed].

    Article  CAS  Google Scholar 

  • Ebrahimi, A., Moaveni, P., Taghiandashtbozorg, A., & Farahani, H. A. (2011). Effects of temperature and varieties on essential oil content and quantity features of chamomile. Journal of Agricultural Extension and Rural Development, 3(2), 19–22.

    CAS  Google Scholar 

  • Efferth, T., & Greten, H. J. (2012). Medicinal and aromatic plant research in the 21st Century. Medicinal and Aromatic Plants, 1(2), 1–4.

    Google Scholar 

  • Elad, Y., & Pertot, I. (2014). Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99–139.

    Article  CAS  Google Scholar 

  • El-Serafy, R. S., El-Sheshtawy, A. N. A., Atteya, A. K., Al-Hashimi, A., Abbasi, A. M., & Al-Ashkar, I. (2021). Seed Priming with Silicon as a Potential to Increase Salt Stress Tolerance in Lathyrus odoratus. Plants, 10(10), 2140.

    Article  CAS  Google Scholar 

  • El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., et al. (2021). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 16(3), 344–353.

    Article  CAS  Google Scholar 

  • Ezz El-Din, A. A., Aziz, E. E., Hendawy, S. F., & Omer, E. A. (2009). Response of Thymus vulgaris L. to salt stress and alar (B9) in newly reclaimed soil. The Journal of Applied Sciences Research, 5(12), 2165–2170.

    CAS  Google Scholar 

  • Faeth, S. H. (2002). Are endophytic fungi defensive plant mutualists? Oikos, 98, 5–36.

    Article  Google Scholar 

  • Huizing, H. J., Van der Molen, W., Kloek, W., & Dennljs, A. P. M. (1991). Detection of lolines in endophyte-containing meadow fescue in the Netherlands and theeffect of elevated temperature on induction of lolines in endophyte-infected perennial ryegrass. Grass and Forage Science, 46, 441–445.

    Article  CAS  Google Scholar 

  • Faraji, J., & Sepehri, A. (2019). Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science, 41, 309–317.

    Article  Google Scholar 

  • Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., & Chen, F. (2008). Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant, Soil and Environment, 54(9), 374–381.

    Article  CAS  Google Scholar 

  • Ghasemlou, F., Amiri, H., Karamian, R., & Mirzaie-asl, A. (2019). Alleviation of the effects of on drought stress Verbascum nudicuale by methyl jasmonate and titanium dioxide nanoparticles. Iranian Journal of Plant Physiology, 9(4), 2911–2920.

    Google Scholar 

  • Ghavam, M. (2019). Effect of silver nanoparticles on tolerance to drought stress in Thymus daenensis Celak and Thymus vulgaris L. in germination and early growth stages. Environmental Stresses in Crop Sciences, 12(2), 555–566.

    Google Scholar 

  • Ghorbanpour, M., Mohammadi, H., & Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environmental Science: Nano, 7(2), 443–461.

    CAS  Google Scholar 

  • Göçer, H., Yetişir, H., Ulaş, A., Arslan, M., & Aydın, A. (2021). Plant growth, Ion accumulation and essential oil content of Salvia officinalis Mill and S. tomentosa L. grown under different salt stress. Cilt 24, Sayı, 3, 505–514.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020a). Titanium dioxide nanoparticles (TiO 2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 1–14.

    Article  Google Scholar 

  • Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M. R., & Fotopoulos, V. (2020b). Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 249, 126171.

    Article  CAS  Google Scholar 

  • Goklany, I. M. (2009). Have increases in population, affluence and technology worsened human and environmental well-being. Journal of Economics and Sustainable Development, 1(3), 15.

    Google Scholar 

  • Golkar, P., & Taghizadeh, M. (2018). In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 134(3), 357–368.

    Article  CAS  Google Scholar 

  • Graifenberg, A., Botrini, L., Giustiniani, L., & Di Paola, M. L. (1996). Salinity affects growth, yield and elemental concentration of fennel. HortScience, 31(7), 1131–1134.

    Google Scholar 

  • Gray, D. E., Pallardy, S. G., Garrett, H. E., & Rottinghaus, G. (2003). Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Medic, 69, 50–55.

    Article  CAS  Google Scholar 

  • Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and abiotic stresses in plants (pp. 1–6). Intechopen. https://doi.org/10.5772/intechopen.85832

    Book  Google Scholar 

  • Hajar, A. S., Zidan, M. A., & AlZahrani, H. S. (1996). Effect of salinity stress on the germination, growth and some physiological activities of black cumin (Nigella sativa L). Arab Gulf Journal of Scientific Research, 14(2).

    Google Scholar 

  • Hall, A. E. (2000). Crop Responses to Environment (pp. 137–150). CRC Press.

    Book  Google Scholar 

  • Hamidi, H., & Safarnejad, A. (2010). Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. American-Eurasian Journal of Agricultural & Environmental Sciences, 8(6), 705–709.

    Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Hendawy, S. F., & Khalid, K. A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. The Journal of Applied Sciences Research, 1, 147–155.

    Google Scholar 

  • Hernández-Hernández, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., & González-Morales, S. (2018). Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8(9), 175.

    Article  Google Scholar 

  • Hodaeia, M., Rahimmaleka, M., Arzania, A., & Talebi, M. (2018). The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Industrial Crops and Products, 120, 295–304.

    Article  Google Scholar 

  • Hojjat, S. S., & Ganjali, A. (2016). The effect of silver nanoparticle on lentil seed germination under drought stress. The International Journal of Farming and Allied Sciences, 5(3), 208–212.

    Google Scholar 

  • Horlings, L. G., & Marsden, T. K. (2011). Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Global Environmental Change, 21(2), 441–452.

    Article  Google Scholar 

  • Hosseini, H., & Rezvani, M. P. (2006). Effect of water and salinity stress in seed germination on Psylliom (Plantago ovata). Iranian Journal of Field Crops Research, 4(1), 15–22.

    Google Scholar 

  • Hunt, M. G., & Newman, J. A. (2005). Reduced herbivore resistance from a novel grass-endophyte association. Journal of Applied Ecology, 42, 762–769.

    Article  Google Scholar 

  • Hussein, M. M., Faham, S. Y., & Alva, A. K. (2014). Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. Journal of Agricultural Science, 6(8), 41.

    Article  Google Scholar 

  • Jacobs, D. I., van der Heijden, R., & Verpoorte, R. (2000). Proteomics in plant biotechnology and secondary metabolism research. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 11(5), 277–287.

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, (2007). Somasundaram R, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation, Colloids and Surfaces B: Biointerfaces, vol. 60. 201–206)

    Article  CAS  Google Scholar 

  • Javed, R., Yucesan, B., Zia, M., & Gurel, E. (2018). Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech, 20(2), 194–201.

    Article  CAS  Google Scholar 

  • Jia, N. T., Hela, D. H., & Nu, E. L. (1998). Study on feed experiment of drunken horse grass (Achnatherum inebrians). J Xinj Stock, 4, 31. (in Chinese with English abstract).

    Google Scholar 

  • Jordan, M. J., Martinez, R. M., Cases, M. A., & Sotomayor, J. A. (2003). Watering level effect on Thymus hyemalis Lange essential oil yield and composition. Journal of Agricultural and Food Chemistry, 51, 5420–5427.

    Article  CAS  Google Scholar 

  • Karamian, R., Ghasemlou, F., & Amiri, H. (2020). Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(3), 277–287.

    Article  Google Scholar 

  • Kausar, F., & Shahbaz, M. (2013). Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.). Pakistan Journal of Botany, 45(SI), 67–73.

    CAS  Google Scholar 

  • Khalid, A. (2006). Influence of water stress on growth essential oil and composition of Hypericum brasiliense. Journal of Photochemistry and Photobiology B: Biology, 85, 197–202.

    Google Scholar 

  • Khan, A., Saeed, S. T., & Samad, A. (2015). New record of Catharanthus yellow mosaic virus and a betasatellite associated with lethal leaf yellowing of Kalmegh (Andrographis paniculata) in Northern India. Plant Disease, 99, 292–292.

    Article  CAS  Google Scholar 

  • Khan, I., Awan, S. A., Raza, M. A., Rizwan, M., Tariq, R., Ali, S., & Huang, L. (2021). Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: A life cycle study. Environmental Science and Pollution Research, 28(11), 13712–13724.

    Article  CAS  Google Scholar 

  • Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., et al. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221–232.

    Article  CAS  Google Scholar 

  • Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., Bolling, S., & Chang, S. C. (2003). Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (hawthorn) subjected to drought and cold stress. Journal of Agricultural and Food Chemistry, 51, 3973–3976.

    Article  CAS  Google Scholar 

  • Kirk, H., Vrieling, K., van der Meijden, E., & Klinkhamer, P. G. L. (2010). Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. Journal of Chemical Ecology, 36 (pg, 378–387.

    Article  Google Scholar 

  • Ksouri, S. R., Bellila, A., Skandarani, I., Falleh, H., & Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biologies, 331, 48–55.

    Article  Google Scholar 

  • Kulak, M., Ozkan, A., & Bindak, R. (2019). A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further?. Scientia Horticulturae, 246, 418–436.

    Google Scholar 

  • Kulak, M., Gul, F., & Sekeroglu, N. (2020). Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and Products, 145, 112078.

    Google Scholar 

  • Kulak, M., Jorrín-Novo, J. V., Romero-Rodriguez, M. C., Yildirim, E. D., Gul, F., & Karaman, S. (2021). Seed priming with salicylic acid on plant growth and essential oil composition in basil (Ocimum basilicum L.) plants grown under water stress conditions. Industrial Crops and Products, 161, 113235. https://doi.org/10.1016/j.indcrop.2020.113235

    Article  CAS  Google Scholar 

  • Kumar, J., Singh, S., Singh, M., Srivastava, P. K., Mishra, R. K., Singh, V. P., & Prasad, S. M. (2017). Transcriptional regulation of salinity stress in plants: A short review. Plant Gene, 11, 160–169.

    Google Scholar 

  • Lauchli, A., & Epstein, E. (1990). Plant response to saline and sodic conditions. In K. K. Tanji (Ed.), Agricultural salinity assessment and management (pp. 113–137). American Society of Civil Engineers Manuals and Reports on Engineering Practice.

    Google Scholar 

  • Leithy, S., Gaballah, M. S., & Gomaa, A. M. (2009). Associative impact of bio-and organic fertilizers on geranium plants grown under saline conditions. International Journal of Academic Research, 1(1), 17–23.

    Google Scholar 

  • Liu, J., & Zhu, J. K. (1998). A calcium homologue required for plant salt tolerance. Science, 280, 1934–1945.

    Article  Google Scholar 

  • Liu, H., Wang, X., Wang, D., Zou, Z., & Lianga, Z. (2011). Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 33, 84–88.

    Article  CAS  Google Scholar 

  • Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255.

    Article  Google Scholar 

  • Mahdavi, B., Modares Sanavi, S. A. M., & Balochi, H. R. (2007). The effect of sodium chloride on the germination and seedling growth figures grass pea (Lathyrus sativus L.). Iranian Journal of Biology, 20, 363–374.

    Google Scholar 

  • Manukyan, A. (2011). Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. Drought stress. Medicinal and Aromatic Plant Science and Biotechnology, 5, 119–125.

    Google Scholar 

  • Marchese, J. A., Broetto, F., Ming, L. C., Ducatti, C., Rodella, R. A., Ventrella, M. C., Gomes, G. D. R., & Franceschi, L. (2005). Carbon isotope composition and leaf anatomy as a tool to characterize the photosynthetic mechanism of Artemisia annua L. Journal of the Brazilian Society of Plant Physiology, 17, 187–190.

    Article  CAS  Google Scholar 

  • Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8, 832.

    Article  Google Scholar 

  • Miceli, A., Moncada, A., & D’Anna, F. (2003). Effect of water salinity on seeds-germination of Ocimum basilicum L., Eruca sativa L. and Petroselinum hortense Hoffm. Acta Horticulturae, 609, 365–370.

    Article  Google Scholar 

  • Miles, C. O., Lane, G. A., & Menna, M. E. (1996). High levels of ergonovine and lysergic acid amide in toxic Achnatherum inebrians accompany infection by an Acremonium-like endophytic fungus. Journal of Agricultural and Food Chemistry, 44, 1285–1290.

    Article  CAS  Google Scholar 

  • Mohamed, A. K. S., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63(12), 1736–1747.

    Article  CAS  Google Scholar 

  • Mondal, H. K., & Kaur, H. (2017). Effect of salt stress on medicinal plants and its amelioration by plant growth promoting microbes. International Journal of Bio-resource and Stress Management, 8(2), 316–326.

    Article  Google Scholar 

  • Munns, R., & Termot, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143–160.

    Google Scholar 

  • Mushtaq, A., Jamil, N., Rizwan, S., Mandokhel, F., Riaz, M., Hornyak, G. L., ... & Shahwani, M. N. (2018, September). Engineered Silica Nanoparticles and silica nanoparticles containing Controlled Release Fertilizer for drought and saline areas. In: IOP conference series: Materials science and engineering (Vol. 414, No. 1, p. 012029). IOP Publishing

    Google Scholar 

  • Mustafa, H., Ilyas, N., Akhtar, N., Raja, N. I., Zainab, T., Shah, T., et al. (2021). Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicology and Environmental Safety, 223, 112519.

    Article  CAS  Google Scholar 

  • Nadjafi, F., Shabahang, J., & Damghani, A. M. M. (2010). Effects of salinity and temperature on germination and seedling growth of nine medicinal plant species. Seed Technology, 32(2), 96–107.

    Google Scholar 

  • Naeem, M., Nasir Khan, M., Khan, M. M. A., & Moinuddin. (2013). Adverse effects of abiotic stresses on medicinal and aromatic plants and their alleviation by calcium. Plant Acclimation to Environmental Stress. In N. Tuteja & S. S. Gill (Eds.), Plant Acclimation to Environmental Stress (pp. 101–146). https://doi.org/10.1007/978-1-4614-5001-6_5

    Chapter  Google Scholar 

  • Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F. A., & Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In Plant signaling molecules (pp. 157–168). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

  • Najafian, S., Khoshkhui, M., Tavallali, V., & Saharkhiz, M. J. (2009). Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation. Australian Journal of Basic and Applied Sciences, 3(3), 2620–2626.

    CAS  Google Scholar 

  • Neffati, M., & Marzouk, B. (2008). Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Industrial Crops and Products, 28(2), 137–142.

    Google Scholar 

  • Neffati, M., Sriti, J., Hamdaoui, G., Kchouk, M. E., & Marzouk, B. (2011). Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chemistry, 124, 221–225.

    Article  CAS  Google Scholar 

  • Nemeskéri, E., Neményi, A., & B˝ocs, A., Pék, Z., & Helyes, L. (2019). Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water, 11, 586.

    Article  Google Scholar 

  • Nowak, M., Manderscheid, R., Weigel, H.-J., & Kleinwa¨chter, M., & Selmar, D. (2010). Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality, 83, 133–136.

    CAS  Google Scholar 

  • Ozimek, L., Pospiech, E., & Narine, S. (2010). Nanotechnologies in food and meat processing. Acta Scientiarum Polonorum Technologia Alimentaria, 9(4), 401–412.

    CAS  Google Scholar 

  • Öztürk, A., Unlukara, A., Ipek, A., & Gurbuz, B. (2004). Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pakistan Journal of Botany, 36(4), 787–792.

    Google Scholar 

  • Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151.

    Article  Google Scholar 

  • Postman, J. D., Tzanetakis, I. E., & Martin, R. R. (2004). First report of Strawberry latent ring spot virus in a Mentha sp. from North America. Plant Disease, 88, 907–907.

    Article  CAS  Google Scholar 

  • Pradhan, J., Sahoo, S. K., Lalotra, S., & Sarma, R. S. (2017). Positive impact of abiotic stress on medicinal and aromatic plants. International Journal of Plant Sciences, 12(2), 309–313. https://doi.org/10.15740/HAS/IJPS/12.2/309-313

    Article  Google Scholar 

  • Qin, A. D., Wu, H., Peng, H., Yao, Y., Ni, Z., Li, Z., Zhou, C., & Sun, Q. (2008). Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genomics, 9, 432.

    Article  Google Scholar 

  • Queslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., & Lachaal, M. (2010). Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum, 32(2), 289–296.

    Article  Google Scholar 

  • Quiterio-Gutiérrez, T., Ortega-Ortiz, H., Cadenas-Pliego, G., Hernández-Fuentes, A. D., Sandoval-Rangel, A., Benavides-Mendoza, A., et al. (2019). The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences, 20(8), 1950.

    Article  Google Scholar 

  • Rahdari, P., & Hoseini, S. M. (2012). Drought stress: A review. The International Journal of Agronomy and Plant Production, 3(10), 443–446.

    Google Scholar 

  • Raj, S. K., Kumar, S., Pratap, D., Vishnoi, R., Choudhari, S., & Chandra, S. (2007). Natural occurrence of Cucumber mosaic virus on lemongrass (Cymbopogoncitratus), a new record. Australasian Plant Disease Notes, 2, 95–96.

    Article  Google Scholar 

  • Rajput, V. D., Minkina, T., Kumari, A., Singh, V. K., Verma, K. K., Mandzhieva, S., et al. (2021). Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants, 10(6), 1221.

    Article  CAS  Google Scholar 

  • Ramin, A. A. (2005). Effects of salinity and temperature on germination and seedling establishment of sweet basil (Ocimum basilicumL.). The Journal of Herbs, Spices & Medicinal Plants, 11(4), 81–90.

    Article  Google Scholar 

  • Raparelli, E., & Lolletti, D. (2020). Research, innovation and development on Corylus avellana through the bibliometric approach. International Journal of Fruit Science, 20(sup3), S1280–S1296.

    Article  Google Scholar 

  • Rathore, S., Singh, N., & Singh, S. K. (2014). Influence of NaCl on biochemical parameters of two cultivars of Stevia rebaudiana regenerated in vitro. The Journal of Stress Physiology & Biochemistry, 10, 287–296.

    Google Scholar 

  • Ravishankar, G. A., & Rao, S. R. (2000). Biotechnological production of phytopharmaceuticals. Journal of Biochemistry Molecular Biology and Biophysics, 4, 73–102.

    CAS  Google Scholar 

  • Razmjoo, K., Heydarizadeh, P. & Sabzalian, M. R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. International Journal of Agriculture and Biology, 10(4), 451–454.

    Google Scholar 

  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. The Journal of Plant Physiology, 161, 1189–1202.

    Article  CAS  Google Scholar 

  • Ritonga, F. N., & Chen, S. (2020). Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9(5), 560. https://doi.org/10.3390/plants9050560

    Article  CAS  Google Scholar 

  • Rodrigues, E. S., Gomes, M. H. F., Corrêa, C. G., Pereira, A. E. S., de Almeida, E., Ghoshal, S., et al. (2021). Are nanomaterials making agriculture more productive? Outputs from a metadata analysis of 2009-2020 research. agriRxiv.

    Google Scholar 

  • Roychoudhury, A. (2020). Silicon-nanoparticles in crop improvement and agriculture. International Journal on Recent Advancement in Biotechnology & Nanotechnology, 3(1). [ISSN: 2582-1571 (online)].

    Google Scholar 

  • Said-Al Ahl, H. A. H., & Hussein, M. S. (2010). Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean Journal of Applied Science, 3, 125–141.

    Google Scholar 

  • Said-Al Ahl, H. A. H., & Omer, E. A. (2011). Medicinal and aromatic plants production under salt stress. Herba Pol, 57, 72–87.

    Google Scholar 

  • Said-Al Ahl, H. A. H., Meawad, A. A., Abou-Zeid, E. N., & Ali, M. S. (2010). Response of different basil varieties to soil salinity. The International Agrophysics, 24, 183–188.

    CAS  Google Scholar 

  • Said-Al Ahl, H. A. H., Omer, E. A., & Naguib, N. Y. (2009). Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano. The International Agrophysics, 23(3), 269–275.

    CAS  Google Scholar 

  • Salajegheh, M., Yavarzadeh, M., Payandeh, A., & Akbarian, M. M. (2020). Effects of titanium and silicon nanoparticles on antioxidant enzymes activity and some biochemical properties of Cuminum cyminum L. under drought stress. Banat's. Journal of Biotechnology, 11(21), 19–25.

    CAS  Google Scholar 

  • Samad, A., Ajayakumar, P. V., Gupta, M. K., Shukla, A. K., Darokar, M. P., Somkuwar, B., & Alam, M. (2008). Natural infection of periwinkle (Catharanthus roseus) with Cucumber mosaic virus, subgroup IB. Australasian Plant Disease Notes, 3, 30–34.

    Google Scholar 

  • Schuppler, U., He, P. H., John, P. C., & Munns, R. (1998). Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant Physiology, 117, 667–678. [CrossRef].

    Article  CAS  Google Scholar 

  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., et al. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University – Science, 33(1), 101207.

    Article  Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32, 237–249.

    Article  Google Scholar 

  • Shahverdi, M. A., Omidi, H., & Tabatabaei, S. J. (2018). Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Industrial Crops and Products, 125, 408–415.

    Article  Google Scholar 

  • Shalan, M. N., Abdel-Latif, T. A. T., & Ghadban, E. A. E. E. (2006). Effect of water salinity and some nutritional compounds of the growth and production of sweet marjoram plants (Majorana hortensis L.). The Egyptian Journal of Agricultural Research, 84(3), 959.

    Article  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  • Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H., et al. (2021). Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules, 26(13), 4090.

    Article  CAS  Google Scholar 

  • Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429–2437.

    Article  CAS  Google Scholar 

  • Singh, A., Gupta, R., Saikia, S. K., Pant, A., & Pandey, R. (2016). Diseases of medicinal and aromatic plants, their biological impact and management. Plant Genetic Resources: Characterization and Utilization, 14(4), 370–383.

    Article  Google Scholar 

  • Singh, A., Tiwari, S., Pandey, J., Lata, C., & Singh, I. K. (2021). Role of nanoparticles in crop improvement and abiotic stress management. Journal of Biotechnology, 337, 57–70.

    Article  CAS  Google Scholar 

  • Singh, M., Ganesha-Rao, R. S., & Ramesh, S. (1997). Irrigation and nitrogen requirement of lemongrass (Cymbopogon flexuosus (Sleud) Wats) on a red sandy loam soil under semiarid tropical conditions. Journal of Essential Oil Research, 9(5), 569–574.

    Article  CAS  Google Scholar 

  • Soliz, G. J. B., de Rodriguez, D. J., Rodriguez, G. R., Angulo, S. J. L., & Mendez, P. G. (2002). Quinoasaponins: Concentration and composition analysis. In J. Janick & A. Whipkey (Eds.), Trends in new crops and new uses (pp. 110–114). ASHS.

    Google Scholar 

  • Sosa, L., Llanes, A., Reinoso, H., Reginato, M., & Luna, V. (2005). Osmotic and specific ion effect on the germination of Prosopis strombulifera. Annals of Botany, 96, 261–267.

    Article  CAS  Google Scholar 

  • Sotomayor, J. A. R., Mart’ınez, M., Garc’ıa, A. J., & Jordan, M. J. (2004). Thymus zygissubsp. gracilis: Watering level effect on phytomass production and essential oil quality. Journal of Agricultural and Food Chemistry, 52(17), 5418–5424.

    Article  Google Scholar 

  • Southwell, I. A., & Russell, M. F. (2002). Volatile oil comparison of cotyledon leaves of chemotypes of Melaleuca alternifolia. Phytochemistry, 59(4), 391–393.

    Article  CAS  Google Scholar 

  • Tabatabaie, S. J., & Nazari, J. (2007). Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turkish Journal of Agriculture and Forestry, 31(4), 245–253.

    Google Scholar 

  • Taherkhani, T. R., Moradi, N. A., & Zandi, P. (2011). Assessment of nitrogen levels on flower yield of Calendula grown under different water deficit stress using drought tolerant indices. Journal of American Science, 7, 591–598.

    Google Scholar 

  • Taran, N., Storozhenko, V., Svietlova, N., Batsmanova, L., Shvartau, V., & Kovalenko, M. (2017). Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Research Letters, 12(1), 60.

    Article  Google Scholar 

  • Teklic, T., Parađikovic, N., Špoljarevic, M., Zeljkovic, S., Loncˇari, Z., & Lisjak, M. (2021). Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178, 169–191.

    Article  CAS  Google Scholar 

  • Thaung, M. M. (2008). Pathologic and taxonomic analysis of leaf spot and tar spot diseases in a tropical dry to wet monsoon ecosystem of lowland Burma. Australasian Plant Pathology, 37, 180–197.

    Article  Google Scholar 

  • Uzilday, B., Turkan, I., Sekmen, A. H., Ozgur, R. E. N. G. I. N., & Karakaya, H. C. (2012). Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Science, 182, 59–70. [CrossRef].

    Article  CAS  Google Scholar 

  • Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., et al. (2021). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 1–12.

    Google Scholar 

  • Vasconsuelo, A., & Boland, R. (2007). Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science, 172, 861–875.

    Article  CAS  Google Scholar 

  • Vadez, V., Rao, J. S., Bhatnagar-Mathur, P., & Sharma, K. K. (2013). DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biology, 15, 45–52.

    Article  CAS  Google Scholar 

  • Večeřová, K., Večeřa, Z., Dočekal, B., Oravec, M., Pompeiano, A., Tříska, J., & Urban, O. (2016). Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution, 218, 207–218.

    Article  Google Scholar 

  • Verma, S., Nizam, S., & Verma, P. K. (2013). Biotic and abiotic stress signalling in plants. In M. Sarwat, A. Ahmad, & M. Z. Abdin (Eds.), Genomics and Proteomics Perspective (Vol. 1, pp. 25–49). Springer Science.

    Google Scholar 

  • Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., & Memelink, J. (1999). Metabolic engineering of plant secondary metabolite pathways for the production of chemicals. Biotechnology Letters, 21, 467–479.

    Article  CAS  Google Scholar 

  • Vriezen, J. A. C., Bruijn, F. J., & Nusslein, K. (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Applied and Environmental Microbiology, 73, 3451–3459.

    Article  CAS  Google Scholar 

  • Wada, K. C., Mizuuchi, K., Koshio, A., Kaneko, K., Mitsui, T., & Takeno, K. (2014). Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. Journal of Plant Physiology, 171(11), 895–902.

    Article  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223. [CrossRef].

    Article  Google Scholar 

  • Wang, D. H., Du, F., Liu, H. Y., & Liang, Z. S. (2010). Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. Journal of Medicinal Plants Research, 4(24), 2691–2699.

    Article  CAS  Google Scholar 

  • Wen, P. F., Chen, J. Y., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., et al. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55(1), 1–10.

    Article  CAS  Google Scholar 

  • Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5, 649–654. https://doi.org/10.4161/psb.5.6.11398

    Article  CAS  Google Scholar 

  • Yaldiz, G., & Camlica, M. (2021a). Impact of various environmental stress factors on productivity, quality, and secondary metabolites of fenugreek (Trigonella foenum-graecum L.). In M. Naeem, T. Aftab, & M. M. A. Khan (Eds.), Fenugreek. Springer. https://doi.org/10.1007/978-981-16-1197-1_14

    Chapter  Google Scholar 

  • Yaldiz, G., & Camlica, M. (2021b). Selenium and salt interactions in sage (Salvia officinalis L.): Growth and yield, chemical content, ion uptake. Industrial Crops and Products, 171, 113855. https://doi.org/10.1016/j.indcrop.2021.113855

    Article  CAS  Google Scholar 

  • Yaldız, G., Özen, F., Çamlıca, M., & Sönmez, F. (2018). Alleviation of salt stress by increasing potassium sulphate doses in four medicinal and aromatic plants. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 68(5), 437–447. https://doi.org/10.1080/09064710.2017.1420214

    Article  CAS  Google Scholar 

  • Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y., & Beyaz, R. (2020). Plant responses to salt stress. In I. Y. Abdurakhmonov (Ed.), Plant breeding – current and future views. IntechOpen. https://doi.org/10.5772/intechopen.93920. Available from: https://www.intechopen.com/chapters/73460.

    Chapter  Google Scholar 

  • Yuan, B. Z., Bie, Z. L., & Sun, J. (2021). Bibliometric Analysis of Global Research on Muskmelon (Cucumis melo L.) Based on Web of Science. HortScience, 1(aop), 1–8.

    Google Scholar 

  • Zemanová, V., Pavlík, M., Pavlíková, D., & Tlustoš, P. (2014). The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant, Soil and Environment, 60(9), 426–432.

    Article  Google Scholar 

  • Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry, 43, 977–984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulak, M., Yaldiz, G., Camlica, M. (2023). Applications of Some Nanoparticles and Responses of Medicinal and Aromatic Plants Under Stress Conditions. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_9

Download citation

Publish with us

Policies and ethics