Skip to main content

Effects of Climatic Hazards on Agriculture in the Teesta Basin of Bangladesh

  • Chapter
  • First Online:
Monitoring and Managing Multi-hazards

Abstract

This study presents the damages to the agricultural sector due to various climatic hazards at the Teesta basin of Bangladesh. Survey data were collected from 276 farmers from Lalmonirhat, Rangpur and Nilphamari districts. Remote sensing maps have also been used to analyze changes in land use and river channel. The results reveal that flood is the most catastrophic natural disaster in the study area. Inundation of Aman rice at the sowing stage is the main problem which causes huge losses of the farmers. Hailstorms affect jute cultivation in Kursamari and Azam khan villages. Cold waves caused serious damage to Rabi crops. Diseases associated with cold and fog also lessen farmer’s winter crops. The finding of this study will support the government to design future strategies to reduce the damages as well as prepare the people to adapt to the adverse climatic conditions in the Teesta basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam GMM (2016) An assessment of the livelihood vulnerability of the riverbank erosion hazard and its impact on food security for rural households in Bangladesh. Ph.D. thesis, University of Southern Queensland, Queensland, Australia

    Google Scholar 

  • Alam GMM, Alam K, Mushtaq S, Khatun MN, Filho WL (2018) Strategies and barriers to adaptation of hazard-prone rural households in Bangladesh. In: Filho WL, Nalau J (eds) Limits to climate change adaptation. Springer International Publishing AG

    Google Scholar 

  • Ali MS, Mahjabin T, Hosoda T (2013) Impact of climate change on floods of Bangladesh and introducing flood intensity index to characterize the flooding scenario. J Eng Sci 4(1):23–34

    Google Scholar 

  • Amir KI, Ahmed T (2013) Climate change and its impact on food security in Bangladesh: a case study on Kalapara, Patuakhali, Bangladesh. Earth Sci Clim Change 4(5):155. https://doi.org/10.4172/2157-7617.1000155

  • Arnell NW, Lloyd-Hughes B (2014) The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim Change 122:127–140. https://doi.org/10.1007/s10584-013-0948-4

    Article  Google Scholar 

  • Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. Clim Change 134:387–401. https://doi.org/10.1007/s10584-014-1084-5

  • Arnell NW, Brown S, Gosling SN, Gottschalk P, Hinkel J, Huntingford C, Lloyd-Hughes B, Lowe JA, Nicholls RJ, Osborn TJ, Osborne TM, Rose GA, Smith P, Wheeler TR, Zelazowski P (2016) The impacts of climate change across the globe: a multi-sectoral assessment. Clim Change 134:457–474. https://doi.org/10.1007/s10584-014-1281-2

    Article  Google Scholar 

  • Aydinalp C, Cresser MS (2008) The effects of global climate change on agriculture. Am Eurasian J Agric Environ Sci 3(5):672–676

    Google Scholar 

  • Basak A, Rahman ATMS, Das J, Hosonod T, Kisi O (2022) Drought forecasting using the prophet model in semi-arid climate region of western India. Hydrol Sci J. https://doi.org/10.1080/02626667.2022.2082876

  • Bazlur Rashid AQM, Rahman MME, Islam MZ, Hossain MA (2011) Management of cereal diseases in Bangladesh: a review. Int J Sustain Crop Prod 6(2):36–41

    Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  Google Scholar 

  • Carter TR, Rovere EL (2011) Developing and applying scenarios. In: Climate change 2001: impacts, adaptation, and vulnerability, contribution of working group II to the third assessment report of the intergovernmental panel on climate change, pp 145–190. Retrieved from http://www.ipcc.ch/ipccreports/tar/wg2/pdf/wg2TARannexB.pdf. On 22 Dec 2016

  • Choudhury S, Basak A, Biswas S, Das J (2022) Flash flood susceptibility mapping using GIS-based AHP method. In: Pradhan B, Shit PK, Bhunia GS, Adhikary PP, Pourghasemi HR (eds) Spatial modelling of flood risk and flood hazards. GIScience and geo-environmental modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-94544-2_8

  • Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. J Geophys Res 114:D16108. https://doi.org/10.1029/2008JD011523

    Article  Google Scholar 

  • Das J, Rahman AS, Mandal T, Saha P (2020) Challenges of sustainable groundwater management for large scale irrigation under changing climate in Lower Ganga river basin in India. Groundw Sustain Dev 11:100449. https://doi.org/10.1016/j.gsd.2020.100449

    Article  Google Scholar 

  • Das J, Mandal T, Rahman AS, Saha P (2021a) Spatio-temporal characterization of rainfall in Bangladesh: an innovative trend and discrete wavelet transformation approaches. Theoret Appl Climatol 143(3):1557–1579. https://doi.org/10.1007/s00704-020-03508-6

    Article  Google Scholar 

  • Das J, Rahman AS, Mandal T, Saha P (2021b) Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environ Dev Sustain 23(5):7289–7309. https://doi.org/10.1007/s10668-020-00917-5

    Article  Google Scholar 

  • Dewan TH (2014) Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim Extremes 7:36–42. Retrieved from https://doi.org/10.1016/j.wace.2014.11.001. On 20 May 2019

  • Dutta D (2011) An integrated tool for assessment of flood vulnerability of coastal cities to sea-level rise and potential socio-economic impacts: a case study in Bangkok, Thailand. Hydrol Sci J 56(5):805–823. https://doi.org/10.1080/02626667.2011.585611

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteor Soc 81(3):417–425. https://doi.org/10.1175/1520-0477(2000)081%3c0417:OVATIE%3e2.3.CO;2

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000b) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. https://doi.org/10.1126/Science.289.5487.206

    Article  Google Scholar 

  • Etzold B, Ahmed AU, Hassan SR, Neelormi S (2014) Clouds gather in the sky, but no rain falls. Vulnerability to rainfall variability and food insecurity in Northern Bangladesh and its effects on migration. Clim Dev 6(1):18–27. https://doi.org/10.1080/17565529.2013.833078

  • Haque AKE, Lohano HD, Mukhopadhyay P, Nepal M, Shafeeqa F, Vidanage SP (2019) NDC pledges of South Asia: are the stakeholders onboard? Clim Change 155:237–244. https://doi.org/10.1007/s10584-019-02417-6

  • Kamruzzaman M, Rahman ATMS, Jahan CS (2015) Adapting cropping systems under changing climate in NW Bangladesh. Lambert Academic Publishing

    Google Scholar 

  • Kamruzzaman M, Rahman ATMS, Kabir ME, Jahan CS, Mazumder QH, Rahman MS (2016a) Spatio-temporal analysis of climatic variables in the western part of Bangladesh. Environ Dev Sustain 18(6). https://doi.org/10.1007/s10668-016-9872-x

  • Kamruzzaman M, Kabir ME, Rahman ATMS, Mazumder QH, Rahman MS, Jahan CS (2016b) Modeling of agricultural drought risk pattern using Markov chain and GIS in the western part of Bangladesh. Environ Dev Sustain 18(6). https://doi.org/10.1007/s10668-016-9898-0

  • Kamruzzaman M, Mandal T, Rahman ATM, Khalek A, Alam GMM, Rahman MS (2021) Climate modeling, drought risk assessment and adaptation strategies in the western part of Bangladesh. In: Alam et al. (eds) Climate vulnerability and resilience in the global south, pp 103–129

    Google Scholar 

  • Kamruzzaman M, Rahman ATMS, Basak A, Alam J, Das J (2022) Assessment of climate change impacts and adaptation strategies through the prism of farmers’ perception: a case study. Int J Environ Sci Technol 1–20. https://doi.org/10.1007/s13762-022-04254-0

  • Karim MR, Thiel A (2017) Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh. Clim Risk Manag 17:92–103. Retrieved from https://doi.org/10.1016/j.crm.2017.06.002. On 22 July 2020

  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, Muir-Wood R, Brakenridge GR, Kron W, Benito G, Honda Y, Takahashi K, Sherstyukov B (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28. https://doi.org/10.1080/02626667.2013.857411

    Article  Google Scholar 

  • Lal M (2003) Global climate change: India’s monsoon and its variability. J Environ Stud Policy 6(1):1–34. Retrieved from https://www.researchgate.net/publication/281402625. On 18 May 2020

  • Liang X, Xu M, Gao W, Reddy KR, Kunkel K, Schmoldt DL, Samel AN (2012) Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005. Agron J 104(3):675–683. https://doi.org/10.2134/agronj2011.0251

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(1):607–610

    Article  Google Scholar 

  • Lu X, Wrathall DJ, Sundsøy PR, Nadiruzzaman M, Wetter E, Iqbal A, Qureshi T, Tatem AJ, Canright GS, Engø-Monsen K, Bengtsson L (2016) Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Clim Change 138:505–519. https://doi.org/10.1007/s10584-016-1753-7

    Article  Google Scholar 

  • Manandhar S, Vogt DS, Perret SR, Kazama F (2011) Adapting cropping systems to climate change in Nepal: a cross-regional study of farmers’ perception and practices. Reg Environ Change 11:335–348. https://doi.org/10.1007/s10113-010-0137-1

    Article  Google Scholar 

  • Mirza MMQ (2002) Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob Environ Chang 12:127–138

    Article  Google Scholar 

  • Mirza MQ, Warrick RA, Ericksen NJ, Kenny GJ (1998) Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrol Sci J 43(6):845–858. https://doi.org/10.1080/02626669809492182

    Article  Google Scholar 

  • Mitra SK, Pathak PK (1984) The nature of simple random sampling. Ann Stat 12(4):1536. https://doi.org/10.1214/aos/1176346810

    Article  Google Scholar 

  • Moore N, Alagarswamy G, Pijanowski B, Thornton P, Lofgren B, Olson J, Andresen J, Yanda P, Qi J (2012) East African food security as influenced by future climate change and land use change at local to regional scales. Clim Change 110:823–844. https://doi.org/10.1007/s10584-011-0116-7

    Article  Google Scholar 

  • Mubaya CP, Mafongoya P (2017) The role of institutions in managing local level climate change adaptation in semi-arid Zimbabwe. Clim Risk Manag 16:93–105. https://doi.org/10.1016/j.crm.2017.03.003

    Article  Google Scholar 

  • Nuttall JG, Barlow KM, Delahunty AJ, Christy BP, O’Leary GJ (2018) Acute high temperature response in wheat. Agron J 110(4):1296–1308. https://doi.org/10.2134/agronj2017.07.0392

    Article  Google Scholar 

  • Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming climate dynamics. Clim Dyn 14:267–274. Retrieved from https://epic.awi.de/id/eprint/3664/1/Oer1998b.pdf. On 30 Apr 2020

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112. https://doi.org/10.1016/j.eja.2010.11.003

    Article  Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Fischer G, Livermore M (1999) Climate change and world food security: a new assessment. Glob Environ Chang 9:S51–S67

    Article  Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67. https://doi.org/10.1016/j.gloenvcha.2003.10.008

  • Partey ST, Dakorah AD, Zougmoré RB, Ouédraogo M, Nyasimi M, Nikoi GK, Huyer S (2020) Gender and climate risk management: evidence of climate information use in Ghana. Clim Change 158:61–75. https://doi.org/10.1007/s10584-018-2239-6

    Article  Google Scholar 

  • Paudyal GN (2002) Forecasting and warning of water-related disasters in a complex hydraulic setting—the case of Bangladesh. Hydrol Sci J 47(S1):S5–S18. https://doi.org/10.1080/02626660209493018

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B 360:2021–2035. https://doi.org/10.1098/rstb.2005.1752

    Article  Google Scholar 

  • Rahman MR, Lateh H (2017) Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoret Appl Climatol 128:32–38. https://doi.org/10.1007/s00704-015-1688-3

  • Rahman MM, Day TK, Ali MA, Khalequzzaman KM, Hussain MA (2008) Control of late blight disease of potato by using new fungicides. Int J Sustain Crop Prod 3(2):10–15

    Google Scholar 

  • Ruane AC, Major DC, Yu WH, Alam M, Hussain SG, Khan AS, Hassan A, Rosenzweig C (2013) Multi-factor impact analysis of agricultural production in Bangladesh with climate change. J Glob Environ Change 23:338–350. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002677.pdf. On 26 Mar 2017

  • Sanderson MG, Hemming DL, Betts RA (2011) Regional temperature and precipitation changes under high-end ( ≥ 4 °C) global warming. Phil Trans R Soc A 369:85–98. https://doi.org/10.1098/rsta.2010.0283

    Article  Google Scholar 

  • Tao F, Zhang Z, Zhang S, Zhu Z, Shi W (2012) Response of crop yields to climate trends since 1980 in China. Clim Res 54:233–247. https://doi.org/10.3354/cr01131

    Article  Google Scholar 

  • Thirtle C, Lin L, Piesse J (2003) The impact of research-led agricultural productivity growth on poverty reduction in Africa, Asia and Latin America. World Dev 31(12):1959–1975. https://doi.org/10.1016/j.worlddev.2003.07.001

  • Thomas V, Albert JRG, Hepburn C (2014) Contributors to the frequency of intense climate disasters in Asia-Pacific countries. Clim Change 126:381–398. https://doi.org/10.1007/s10584-014-1232-y

    Article  Google Scholar 

  • Tol RSJ, Wagner S (2010) Climate change and violent conflict in Europe over the last millennium. Clim Change 99:65–79. https://doi.org/10.1007/s10584-009-9659-2

    Article  Google Scholar 

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, Meijgaard EV, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. https://doi.org/10.1007/s00382-013-1714-z

  • Veron SR, Abelleyra DD, Lobell DB (2015) Impact of precipitation and temperature on crop yields in the Pampas. Clim Change 130(2):235–245. Retrieved from http://www.altemetric.com/detailes/3726019. On 30 July 2016

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53(10):941–952. https://doi.org/10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

  • Young G, Zavala H, Wandel J, Smit B, Salas S, Jimenez E, Fiebig M, Espinoza R, Diaz H, Cepeda J (2010) Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Clim Change 98:245–276. https://doi.org/10.1007/s10584-009-9665-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamruzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Mamun, M.A. et al. (2023). Effects of Climatic Hazards on Agriculture in the Teesta Basin of Bangladesh. In: Das, J., Bhattacharya, S.K. (eds) Monitoring and Managing Multi-hazards. GIScience and Geo-environmental Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-15377-8_5

Download citation

Publish with us

Policies and ethics