Skip to main content

Advertisement

Log in

Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater is the replenishable and dynamic resources on the earth. Understanding the sustainability of water management is, therefore, the crucial factor in faring about agriculture, economy and environmental conditions. This study investigated the sustainability of large-scale groundwater-based irrigation by identifying the trend in groundwater depth (GWD) and explored the driving factors to characterize the identified trends in the lower Ganga River basin (LGRB) in India with an area of 195,601 km2. Trends were identified in the in situ observation groundwater data (total wells = 527) by applying innovative trend analysis (ITA), Mann–Kendall (MK) test or modified MK (mMK) and Sen’s slope estimator. The obtained results of all the methods confirmed that GWD in most of the studied wells had an increasing tendency in LGRB during 1996–2017. ITA showed that almost 85.39%, 62.23%, 85.39% and 57.12% wells for pre-monsoon, monsoon, post-monsoon and winter seasons, respectively, showed increasing trends. The rapidly increasing trend (slope: 5.22–136.33 cm/year) in monsoon season indicates shallow groundwater resource depletion, and groundwater abstraction exceeds the groundwater recharge. Findings also revealed that shallow pumps would not be functioning in the future for large-scale irrigation since shallow water is becoming scarce due to increasing water depth. In spite of irrigated areas continued almost the same (1997–2014), decreasing rainfall along with unplanned development of water resources is primarily identified as the main driving force for groundwater depletion at a large scale. Planned water management is urgent for ensuring sustainable irrigation water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullahi, M. G., Toriman, M. E., Gasim, M. B., & Garba, I. (2015). Trends analysis of groundwater: Using non-parametric methods in Terengganu Malaysia. Journal of Earth Science and Climatic Change, 6(1), 251.

    Google Scholar 

  • Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J., et al. (2018). Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmospheric Research, 213, 346–360. https://doi.org/10.1016/j.atmosres.2018.06.019.

    Article  Google Scholar 

  • Ali, M. H., Abustan, I., Rahman, M. A., & Haque, A. A. M. (2012). Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resources Management, 26(3), 623–641. https://doi.org/10.1007/s11269-011-9936-5.

    Article  Google Scholar 

  • Alifujiang, Y., Abuduwaili, J., Maihemuti, B., Emin, B., & Groll, M. (2020). Innovative trend analysis of precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere, 11(4), 332. https://doi.org/10.3390/atmos11040332.

    Article  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109. https://doi.org/10.1038/NGEO2869.

    Article  CAS  Google Scholar 

  • Ay, M., & Kisi, O. (2015). Investigation of trend analysis of monthly total precipitation by an innovative method. Theoretical and Applied Climatology, 120(3–4), 617–629. https://doi.org/10.1007/s00704-014-1198-8.

    Article  Google Scholar 

  • Balleau, W. P. (2013). The policy of “pumping the recharge” is out of control. Eos, Transactions American Geophysical Union, 94(1), 4–4.

    Article  Google Scholar 

  • Behera, B., Kumar, C., Nauriyal, D. K., Nayak, N. C., Prasad, P. M., Rajgopalan, P., Mishra, P., Trivedi, P. L., Agrawal, R., Singh, S. P., Sharma, S., Mazumder, T. N., Upadhyay, V. B., Sharma, V., & Tare, V. (2011). Trends in agriculture and agricultural practices in Ganga basin. An overview. Technical report, Ganga River Basin Environment Management Plan.

  • Bera, S. (2017). Trend analysis of rainfall in Ganga Basin, India during 1901–2000. American Journal of Climate Change, 6(01), 116.

    Article  Google Scholar 

  • Bons, C. A. (Ed.). (2018). Ganga river basin planning assessment report. Main volume and appendices. Deltares with AECOM and FutureWater for the World Bank and the Government of India, Report 1220123-002-ZWS-0003.

  • Chen, Z., Grasby, S. E., & Osadetz, K. G. (2004). Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. Journal of Hydrology, 290(1–2), 43–62.

    Article  CAS  Google Scholar 

  • Chindarkar, N., & Grafton, R. Q. (2019). India’s depleting groundwater: When science meets policy. Asia & the Pacific Policy Studies, 6(1), 108–124. https://doi.org/10.1002/app5.269.

    Article  Google Scholar 

  • Cui, L., Wang, L., Lai, Z., Tian, Q., Liu, W., & Li, J. (2017). Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015. Journal of Atmospheric and Solar-Terrestrial Physics, 164, 48–59. https://doi.org/10.1016/j.jastp.2017.08.001.

    Article  Google Scholar 

  • Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food trade. Nature, 543(7647), 700.

    Article  CAS  Google Scholar 

  • Das, J., & Bhattacharya, S. K. (2018). Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district, West Bengal. Spatial Information Research. https://doi.org/10.1007/s41324-018-0173-3.

    Article  Google Scholar 

  • Das, J., Mandal, T., & Saha, P. (2019). Spatio-temporal trend and change point detection of winter temperature of North Bengal. India: Spatial Information Research. https://doi.org/10.1007/s41324-019-00241-9.

    Book  Google Scholar 

  • Das, J., Mandal, T., Saha, P., & Bhattacharya, S. K. (2020). Variability and trends of rainfall using non-parametric approaches: A case study of semi-arid area. Mausam, 75(1), 33–44.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Wiley.

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197.

    Article  CAS  Google Scholar 

  • Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge. Water Resources Research, 51(5), 3031–3051. https://doi.org/10.1002/2014WR016825.

    Article  Google Scholar 

  • Haktanir, T., & Citakoglu, H. (2014). Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering, 19(9), 05014009.

    Article  Google Scholar 

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Harmancioglu, N. B., Barbaros, F., & Cetinkaya, C. P. (2013). Sustainability issues in water management. Water Resources Management, 27(6), 1867–1891.

    Article  Google Scholar 

  • Kamruzzaman, M., Rahman, A. S., Ahmed, M. S., Kabir, M. E., Mazumder, Q. H., Rahman, M. S., et al. (2018). Spatio-temporal analysis of climatic variables in the western part of Bangladesh. Environment, Development and Sustainability, 20(1), 89–108.

    Article  Google Scholar 

  • Kamruzzaman, M., Rahman, A. T. M. S., Kabir, M. E., Jahan, C. S., Mazumder, Q. H., & Rahman, M. S. (2016). Spatio-temporal analysis of climatic variables in the western part of Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-016-9872-x.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods (4th ed., p. 8). San Francisco, CA: Charles Griffin.

    Google Scholar 

  • Kisi, O. (2015). An innovative method for trend analysis of monthly pan evaporations. Journal of Hydrology, 527, 1123–1129. https://doi.org/10.1016/j.jhydrol.2015.06.009.

    Article  Google Scholar 

  • Kisi, O., & Ay, M. (2014). Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362–375. https://doi.org/10.1016/j.jhydrol.2014.03.005.

    Article  CAS  Google Scholar 

  • Kotchoni, D. V., Vouillamoz, J. M., Lawson, F. M., Adjomayi, P., Boukari, M., & Taylor, R. G. (2019). Relationships between rainfall and groundwater recharge in seasonally humid Benin: A comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeology Journal, 27(2), 447–457.

    Article  CAS  Google Scholar 

  • Li, X., Li, G., & Zhang, Y. (2014). Identifying major factors affecting groundwater change in the North China Plain with grey relational analysis. Water, 6(6), 1581–1600.

    Article  Google Scholar 

  • Llamas, M. R., & Martínez-Santos, P. (2005). Intensive groundwater use: Silent revolution and potential source of social conflicts. Journal of Water Resources Planning and Management, 131(5), 337–341. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(337).

    Article  Google Scholar 

  • Lopez, B., Baran, N., & Bourgine, B. (2015). An innovative procedure to assess multi-scale temporal trends in groundwater quality: Example of the nitrate in the Seine-Normandy basin, France. Journal of Hydrology, 522, 1–10. https://doi.org/10.1016/j.jhydrol.2014.12.002.

    Article  CAS  Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., et al. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766.

    Article  CAS  Google Scholar 

  • Mandal, I., & Talukdar, G. (2013). Landuse land cover dynamic and impact of human dimensions in lower Ganga river basin. Wildlife Institute of India, Dehradun. Technical report No. TR007/2014.

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13, 245–259.

    Article  Google Scholar 

  • Markus, M., Demissie, M., Short, M. B., Verma, S., & Cooke, R. A. (2013). Sensitivity analysis of annual nitrate loads and the corresponding trends in the lower Illinois River. Journal of Hydrologic Engineering, 19(3), 533–543.

    Article  Google Scholar 

  • Nalley, D., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2013). Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmospheric Research, 132, 375–398.

    Article  Google Scholar 

  • Özel, N., Bozdağ, Ş., & Baba, A. (2019). Effect of irrigation system on groundwater resources in Harran Plain (Southeastern Turkey). Journal of Food Science and Engineering, 9, 45–51. https://doi.org/10.17265/2159-5828/2019.02.001.

    Article  Google Scholar 

  • Pravettoni, R. (2015). Ganges basin climate indicators—Rainfall & temperature|GRID-Arendal [WWW Document]. Himalayan Climate and Water Atlas.

  • Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L., et al. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental Earth Sciences, 77(5), 197.

    Article  Google Scholar 

  • Rahman, A. T. M. S., Ahmed, M. S., Adnan, H. M., Kamruzzaman, M., Khalek, M. A., Mazumder, Q. H., et al. (2018). Modeling the changes in water balance components of the highly irrigated western part of Bangladesh. Hydrology and Earth System Sciences, 22(8), 4213–4228.

    Article  Google Scholar 

  • Rahman, A. T. M. S., Hosono, T., Mazumder, Q. H., & Jahan, C. S. (2017a). Sustainable Groundwater Management in Context of Climate Change in Northwest Bangladesh. In D. Komatina (Ed.), Achievements and Challenges of Integrated River Basin Management (pp. 101–120). London: Intech Open. https://doi.org/10.5772/intechopen.73305.

    Chapter  Google Scholar 

  • Rahman, A. T. M. S., Hosono, T., Quilty, J. M., Das, J., & Basak, A. (2020). Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2020.103595.

    Article  Google Scholar 

  • Rahman, A. T. M. S., Jahan, C. S., Mazumder, Q. H., Kamruzzaman, M., & Hosono, T. (2017b). Drought analysis and its implication in sustainable water resource management in Barind area, Bangladesh. Journal of the Geological Society of India, 89(1), 47–56.

    Article  Google Scholar 

  • Rahman, A. T. M. S., Kamruzzama, M., Jahan, C. S., & Mazumder, Q. H. (2016). Long-term trend analysis of water table using ‘MAKESENS’ model and sustainability of groundwater resources in drought prone Barind area, NW Bangladesh. Journal of the Geological Society of India, 87(2), 179–193.

    Article  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999.

    Article  CAS  Google Scholar 

  • Sayre, S. S., & Taraz, V. (2019). Groundwater depletion in India: Social losses from costly well deepening. Journal of Environmental Economics and Management, 93, 85–100. https://doi.org/10.1016/j.jeem.2018.11.002.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American statistical association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Sen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046.

    Article  Google Scholar 

  • Serencam, U. (2019). Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arabian Journal of Geosciences, 12(23), 704. https://doi.org/10.1007/s12517-019-4903-1.

    Article  Google Scholar 

  • Shah, T., Burke, J., Villholth, K. G., Angelica, M., Custodio, E., Daibes, F., et al. (2007). Groundwater: A global assessment of scale and significance. In D. Molden (Ed.), Water for food, water for life (pp. 395–423). London: Earthscan.

    Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., et al. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880.

    Article  Google Scholar 

  • Singh, U. P. (2002). Boro rice in Eastern India. In Rice-wheat consortium regional technical coordination committee meeting (pp. 10–14).

  • Sishodia, R. P., Shukla, S., Graham, W. D., Wani, S. P., & Garg, K. K. (2016). Bi-decadal groundwater level trends in a semi-arid south Indian region: Declines, causes and management. Journal of Hydrology: Regional Studies, 8, 43–58.

    Google Scholar 

  • Stagl, J., Mayr, E., Koch, H., Hattermann, F. F., & Huang, S. (2014). Effects of climate change on the hydrological cycle in central and eastern Europe. In S. Rannow & M. Neubert (Eds.), Managing protected areas in central and eastern Europe under climate change (pp. 31–43). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sun, H., Zhang, X., Wang, E., Chen, S., & Shao, L. (2015). Quantifying the impact of irrigation on groundwater reserve and crop production—A case study in the North China Plain. European Journal of Agronomy, 70, 48–56.

    Article  Google Scholar 

  • Tabari, H., Nikbakht, J., & Some’e, B. S. (2012). Investigation of groundwater level fluctuations in the north of Iran. Environmental Earth Sciences, 66(1), 231–243.

    Article  Google Scholar 

  • Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317–341.

    Article  Google Scholar 

  • Thomas, B. F., Caineta, J., & Nanteza, J. (2017). Global assessment of groundwater sustainability based on storage anomalies. Geophysical Research Letters, 44(22), 445–455.

    Article  Google Scholar 

  • Tosunoglu, F., & Kisi, O. (2017). Trend analysis of maximum hydrologic drought variables using Mann–Kendall and Şen’s innovative trend method. River Research and Applications, 33(4), 597–610. https://doi.org/10.1002/rra.3106.

    Article  Google Scholar 

  • Tuinenburg, O. A., Hutjes, R. W. A., & Kabat, P. (2012). The fate of evaporated water from the Ganges basin. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2011JD016221.

  • Van Steenbergen, F., Kaisarani, A. B., Khan, N. U., & Gohar, M. S. (2015). A case of groundwater depletion in Balochistan, Pakistan: Enter into the void. Journal of Hydrology: Regional Studies, 4, 36–47.

    Google Scholar 

  • Vitola, I., Vircavs, V., Abramenko, K., Lauva, D., & Veinbergs, A. (2012). Precipitation and air temperature impact on seasonal variations of groundwater levels. Scientific Journal of Riga Technical University. Environmental and Climate Technologies, 10, 25–33.

    Article  Google Scholar 

  • Wang, Y., Xu, Y., Tabari, H., Wang, J., Wang, Q., Song, S., et al. (2020). Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 231, 104673. https://doi.org/10.1016/j.atmosres.2019.104673.

    Article  Google Scholar 

  • Watto, M. A., & Mugera, A. W. (2016). Groundwater depletion in the Indus plains of Pakistan: Imperatives, repercussions and management issue. International Journal of River Basin Management, 14(4), 447–458.

    Article  Google Scholar 

  • Wei, X., Li, P., Li, P., & Han, Y. (2013). Dynamic evolutionary tendency of groundwater in irrigation district in changing environment and its driving factors. Journal of Drainage and Irrigation Machinery Engineering, 31(11), 993–999.

    Google Scholar 

  • Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592. https://doi.org/10.1002/joc.4866.

    Article  Google Scholar 

  • Xia, J., Liu, C., Ding, Y., Jia, S., & Lin, C. (2011). Water issues vision in China. Beijing, China: Science Publishing House.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge India-Water Resource Information System portal, India Water Portal and Data.gov Portal in India for providing the groundwater, climatic and irrigational data. Also, the authors would like to thank anonymous reviewers and editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J., Rahman, A.T.M.S., Mandal, T. et al. Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environ Dev Sustain 23, 7289–7309 (2021). https://doi.org/10.1007/s10668-020-00917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00917-5

Keywords

Navigation