Skip to main content

Models in Crop Protection

  • Chapter
  • First Online:
Precision Agriculture: Modelling

Part of the book series: Progress in Precision Agriculture ((PRPRA))

  • 1029 Accesses

Abstract

A plant disease model is a simplified representation of the relationships between pathogens, crops, and the environment that cause the development of epidemics over time and/or space. This chapter describes the different modelling approaches, focusing on fundamental (process-based) models for application in crop protection. The development of process-based dynamic models consists of four steps: (i) definition of the intended use of the model; (ii) conceptualization of the system; (iii) development of the mathematical framework; and (iv) model evaluation. Plant disease models now have a key role in supporting the decision-making process in integrated pest management (IPM). The advantages of using models in IPM are linked to their ability to process and analyze complex information and to provide outputs supporting decision-making at strategic and tactical levels. In particular, simulation models can support strategic decision-making, and predictive models can assist growers in making tactical decisions. Finally, the chapter briefly considers how different models can be combined with the aim of helping growers to make correct and objective decisions about crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allègre, M., Daire, X., Héloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., & Pugin, A. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. The New Phytologist. https://doi.org/10.1111/j.1469-8137.2006.01959.x

  • Anselmi, A., & Legler, S. E. (2021). Un’app innovative per la taratura delle irroratrici. Informatore Agrario, 2, 46.

    Google Scholar 

  • Antman, E. M., Lau, J., Kupelnick, B., Mosteller, F., & Chalmers, T. C. (1992). A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts: Treatments for myocardial infarction. Journal of the American Medical Association. https://doi.org/10.1001/jama.1992.03490020088036

  • Arneson, P.A., Oren, T.R., Loria, R., Jenkins, J.R., Goodman, E.D., Cooper, W.E., 2002. Applescab Model Description. www.scientificsocieties.org/APS/AppleScab/Applescab_Manual.pdf.

  • Baldacci, E. (1947). Epifitie di Plasmopara viticola (1941–46) nell’Oltrepó Pavese ed adozione del calendario di incubazione come strumento di lotta. Atti Ist Bot Lab Crittogam, VIII, 45–85.

    Google Scholar 

  • Blaeser, M., & Weltzien, H. C. (1979). Epidemiologische studien an Plasmopara viticola zur ve rbesserung der spritzterminbestimmung. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz. Journal of Plant Diseases and Protection, 86, 489–498.

    Google Scholar 

  • Bouma, E. (2003). GEWIS, a weather-based decision support system for timing the application of plant protection products. Bulletin OEPP/EPPO Bulletin, 33, 483–488.

    Article  Google Scholar 

  • Bove, F., & Rossi, V. (2020). Components of partial resistance to Plasmopara viticola enable complete phenotypic characterization of grapevine varieties. Scientific Reports. https://doi.org/10.1038/s41598-020-57482-0

  • Bove, F., Savary, S., Willocquet, L., & Rossi, V. (2020a). Designing a modelling structure for the grapevine downy mildew pathosystem. European Journal of Plant Pathology, 157, 251–268. https://doi.org/10.1007/s10658-020-01974-2

    Article  CAS  Google Scholar 

  • Bove, F., Savary, S., Willocquet, L., & Rossi, V. (2020b). Simulation of potential epidemics of downy mildew of grapevine in different scenarios of disease conduciveness. European Journal of Plant Pathology, 158, 599–614. https://doi.org/10.1007/s10658-020-02085-8

    Article  Google Scholar 

  • Bove, F., Savary, S., Willocquet, L., & Rossi, V. (2021). Modelling the effect of partial resistance on epidemics of downy mildew of grapevine. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-021-02367-9

  • Brischetto, C., Bove, F., Languasco, L., & Rossi, V. (2020). Can spore sampler data be used to predict Plasmopara viticola infection in vineyards? Frontiers in Plant Science, 11, 1–12. https://doi.org/10.3389/fpls.2020.01187

    Article  Google Scholar 

  • Butt, D. J., & Jeger, M. J. (1985). The practical implementation of models in crop disease management. In C. A. Gilligan (Ed.), Mathematical modelling of crop disease (pp. 207–230). Academic.

    Google Scholar 

  • Caffi, T., & Rossi, V. (2018). Fungicide models are key components of multiple modelling approaches for decision-making in crop protection. Phytopathologia Mediterranea, 57, 153–169. https://doi.org/10.14601/Phytopathol

    Article  Google Scholar 

  • Caffi, T., Rossi, V., & Bugiani, R. (2010). Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant Disease, 94, 709–716. https://doi.org/10.1094/PDIS-94-6-0709

    Article  CAS  Google Scholar 

  • Caffi, T., Gilardi, G., Monchiero, M., & Rossi, V. (2013). Production and release of asexual sporangia in Plasmopara viticola. Phytopathology. https://doi.org/10.1094/PHYTO-04-12-0082-R

  • Camase, 1996. Register of agro-ecosystems models DLO research institute for agrobiology and soil fertility, .

    Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. Wiley.

    Google Scholar 

  • Christie, M., Cliffe, A., Dawid, P., & Senn, S. (2011). Simplicity, complexity and modelling, simplicity, complexity and modelling. https://doi.org/10.1002/9781119951445

    Book  Google Scholar 

  • Cola, G., Mariani, L., Salinari, F., Civardi, S., Bernizzoni, F., Gatti, M., & Poni, S. (2014). Description and testing of a weather-based model for predicting phenology, canopy development and source-sink balance in Vitis vinifera L. cv. Barbera. Agricultural and Forest Meteorology, 184, 117–136. https://doi.org/10.1016/j.agrformet.2013.09.008

    Article  Google Scholar 

  • Conway, G. R. (1984). Pest and pathogen control: Strategic, tactical, and policy models. Wiley.

    Google Scholar 

  • Cullen, A., & Frey, C. (1999). Probabilistic techniques in exposure assessment, in. Plenum Press.

    Google Scholar 

  • De Vallavieille-Pope, C., Giosue, S., Munk, L., Newton, A. C., Niks, R. E., Ostergard, H., Pons-Kuhnemann, J., Rossi, V., & Sache, I. (2000). Assessment of epidemiological parameters and their use in epidemiological and forecasting models of cereal airborne diseases. Agronomie. https://doi.org/10.1051/agro:2000171

  • de Wit, C. T. (1993). Philosophy and terminology. In P. A. Leffelaar (Ed.), On system analysis and simulation of ecological processes (pp. 3–9). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-4814-6_1

    Chapter  Google Scholar 

  • De Wolf, E. D., & Isard, S. A. (2008). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45, 203–220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

    Article  CAS  Google Scholar 

  • Edminister, E. D. (1978). Concepts for using modeling as a research tool (Technical ed). U.S. Department of Agriculture.

    Google Scholar 

  • Ehler, L. E. (2006). Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Management Science. https://doi.org/10.1002/ps.1247

  • Fedele, G., Bove, F., González-Domínguez, E., & Rossi, V. (2020). A generic model accounting for the interactions among pathogens, host plants, biocontrol agents, and the environment, with parametrization for Botrytis cinerea on grapevines. Agronomy, 10. https://doi.org/10.3390/agronomy10020222

  • Forrester, J. W. (1961). Industrial dynamics. M. I. T.Press.

    Google Scholar 

  • Forrester, J. W. (1997). Industrial dynamics. The Journal of the Operational Research Society, 48, 1037–1041. https://doi.org/10.1057/palgrave.jors.2600946

    Article  Google Scholar 

  • Frey, H. C., & Patil, S. R. (2002). Identification and review of sensitivity analysis methods, in: Risk analysis. https://doi.org/10.1111/0272-4332.00039

    Book  Google Scholar 

  • Fry, W. E., & Fohner, G. R. (1985). Construction of prediction models I: Forecasting disease development. In C. A. Gilligan (Ed.), Advances in plant pathology (pp. 161–178). Academic.

    Google Scholar 

  • Gessler, C., Pertot, I., & Perazzolli, M. (2011). Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. https://doi.org/10.14601/Phytopathol_Mediterr-9360

    Book  Google Scholar 

  • Gil, E., & Escolà, A. (2009). Design of a decision support method to determine volume rate for vineyard spraying. Applied Engineering in Agriculture, 25, 145–151.

    Article  Google Scholar 

  • Gilligan, C. A. (1985). Introduction. In C. A. Gilligan (Ed.), Advances in plant pathology (Mathematical modelling of crop disease) (Vol. 3, pp. 1–10). Academic.

    Google Scholar 

  • Gonzalez-Dominguez, E., Caffi, T., Bodini, A., Galbusera, L., & Rossi, V. (2016). A fuzzy control system for decision-making about fungicide applications against grape downy mildew. European Journal of Plant Pathology, 144, 763–772. https://doi.org/10.1007/s10658-015-0781-x

    Article  CAS  Google Scholar 

  • González-Domínguez, E., Fedele, G., Salinari, F., & Rossi, V. (2020). A general model for the effect of crop management on plant disease epidemics at different scales of complexity. Agronomy, 10. https://doi.org/10.3390/agronomy10040462

  • Isee Systems, Inc. (2005). STELLA. System thinking for education and research. Available online: https://www.iseesystems.com/

  • Kranz, J., & Hau, B. (1980). Systems analysis in epidemiology. Annual Review of Phytopathology. https://doi.org/10.1146/annurev.py.18.090180.000435

  • Kranz, J., & Royle, D. (1978). Perspectives in mathematical modelling of plant disease epidemics. In P. Scott & A. Bainbridge (Eds.), Plant disease epidemiology (pp. 111–120). Blackwell Scientific Publications.

    Google Scholar 

  • Krause, R. A., & Massie, L. B. (1975). Predictive systems: Modern approaches to disease control. Annual Review of Phytopathology, 13, 31–47.

    Article  Google Scholar 

  • Lehoczky, J. (1990). Statistical methods. In D. Heyvan & I. M. Sobe (Eds.), Stochastic models. Elsevier Science Publishers.

    Google Scholar 

  • Madden, L. V., Ellis, M.A. (1988). How to develop plant disease forecasters, In: Experimental techniques in plant disease epidemiology. https://doi.org/10.1007/978-3-642-95534-1_14

  • Madden, L. V, Hughes, G., van den Bosch, F., 2007. The study of plant disease epidemics. The American Phytopathological Society. https://doi.org/10.1094/9780890545058

  • Magarey, R. D., Travis, J. W., Russo, J. M., Seem, R. C., & Magarey, P. A. (2002). Decision support systems: Quenching the thirst. Plant Disease, 86(1), 4–14.

    Article  CAS  Google Scholar 

  • March, J. G. (1994). Primer on decision making: How decisions happen. Simon and Schuster.

    Google Scholar 

  • McCown, R. L. (2002). Changing systems for supporting farmers’ decisions: Problems, paradigms, and prospects. Agricultural Systems, 74, 179–220.

    Google Scholar 

  • Metral, R., Gary, C., Fortino, G., Delière, L., Hoffmann, C., Per- tot, I., Colombini, A., Mugnai, L., Duso, C., Rossi, V., & Caffi, T. (2013). Ex-post assessment of IPM solutions tested in experimental stations and farms and updates of database of alternatives to pesticides and IPM solutions. In Deliverable 6.1, project PURE “pesticide use-and-risk reduction in European farming systems with integrated Pest management” (FP7–265865). Available at http://www.pure-ipm.eu/node/319. (accessed on 02/01/17) (p. 85).

  • Mills, W.D. (1944). Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin, 630, 4.

    Google Scholar 

  • Mulligan, M., & Wainwright, J. (2013). Modelling and model building. In Environmental modelling: Finding simplicity complex (2nd ed., pp. 7–26). https://doi.org/10.1002/9781118351475.ch2

    Chapter  Google Scholar 

  • Mulrow, C. D. (1994). Systematic reviews: Rationale for systematic reviews. British Medical Journal, 309, 597. https://doi.org/10.1136/bmj.309.6954.597

    Article  CAS  Google Scholar 

  • Narayana Reddy, M., & Rao, N. H. (1995). GIS-based decision support Systems in Agriculture. National Academy of Agricultural Research Management.

    Google Scholar 

  • Norton, G. A., Holt, J., & Mumford, J. D. (1993). Introduction to pest models. In G. A. Norton & J. D. Mumford (Eds.), Decision tools for Pest management (pp. 89–99). CAB International.

    Google Scholar 

  • Nutter, F. W. (2007). The role of plant disease epidemiology in developing successful integrated disease management programs. In: General concepts in Integrated Pest and Disease Management. https://doi.org/10.1007/978-1-4020-6061-8_3

  • Oxman, A. D., & Guyatt, G. H. (1993). The science of reviewing research. Annals of the New York Academy of Sciences. https://doi.org/10.1111/j.1749-6632.1993.tb26342.x

  • Papastamati, K., & Van Den Bosch, F. (2007). The sensitivity of the epidemic growth rate to weather variables, with an application to yellow rust on wheat. Phytopathology. https://doi.org/10.1094/PHYTO-97-2-0202

  • Park, E. W., Seem, R. C., Gadoury, D. M., & Pearson, R. C. (1997). DMCAST: A prediction model for grape downy mildew development. Viticulture and Enology Science, 52, 182–189.

    Google Scholar 

  • Pascual, P., Stiber, N., & Sunderland, E. (2003). Draft guidance on the development, evaluation, and application of regulatory environmental models. US Environmental Protection Agency.

    Google Scholar 

  • Patterson, D. W. (2004). Introduction to artificial intelligence and expert systems. Prentice-Hall.

    Google Scholar 

  • Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M. S., Gary, C., Lafond, D., Duso, C., Thiery, D., et al. (2017). A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection, 97, 70–84.

    Article  CAS  Google Scholar 

  • Pfender, W. F. (2006). Interaction of fungicide physical modes of action and plant phenology in control of stem rust of perennial ryegrass grown for seed. Plant Disease. https://doi.org/10.1094/PD-90-1225

  • Plant, R. E., & Mangel, M. (1987). Modeling and simulation in agricultural pest management. SIAM Review. https://doi.org/10.1137/1029043

  • Power, D. J. (2007). A brief history of decision support systems. Decision Support Systems.

    Google Scholar 

  • Rabbinge, R., & de Wit, C. T. (1989). Systems, model and simulation. Tetrahedron Letters, 23, 4461–4464.

    Google Scholar 

  • Renard, P., Alcolea, A., & Ginsbourger, D. (2013). Stochastic versus deterministic approaches. In Environmental modelling: Finding simplicity in complexity (2nd edn). https://doi.org/10.1002/9781118351475.ch8

  • Roelfs, A. P. (1985). Wheat and rye stem rust, in: Diseases, distribution, epidemiology, and control (pp. 3–37). Academic.

    Book  Google Scholar 

  • Rossi, V., Caffi, T., Giosuè, S., & Bugiani, R. (2008). A mechanistic model simulating primary infections of downy mildew in grapevine. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2007.10.046

  • Rossi, V., Giosuè, S., & Caffi, T. (2010). Modelling plant diseases for decision making in crop protection. Precision Crop Protection – The Challenge and Use of Heterogeneity, 241. https://doi.org/10.1007/978-90-481-9277-9

  • Rossi, V., Caffi, T., & Salinari, F. (2012). Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathologia Mediterranea, 51, 457–479. https://doi.org/10.14601/Phytopathol_Mediterr-11038

    Article  Google Scholar 

  • Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Computers and Electronics in Agriculture, 100, 88–99. https://doi.org/10.1016/j.compag.2013.10.011

    Article  Google Scholar 

  • Rossi, V., Sperandio, G., Caffi, T., Simonetto, A., & Gilioli, G. (2019). Critical success factors for the adoption of decision tools in IPM. Agronomy. https://doi.org/10.3390/agronomy9110710

  • Salotti, I. (2021). Development and validation of a mechanistic, weather-based model for predicting Puccinia graminis f. sp. tritici infections and stem rust development in wheat. Doctoral thesis: “Development of epidemiological models for wheat and legumes in crop rotation”.

    Google Scholar 

  • Saltelli, A., Tarantola, S., & Campolongo, F. (2000). Sensitivity analysis as an ingredient of modeling. Statistical Science. https://doi.org/10.1214/ss/1009213004

  • Savary, S., & Willocquet, L. (2014). Simulation modeling in botanical epidemiology and crop loss analysis. Plant Health Instructor. https://doi.org/10.1094/phi-a-2014-0314-01

  • Segarra, J., Jeger, M. J., & Van den Bosch, F. (2001). Epidemic dynamics and patterns of plant diseases. Phytopathology. https://doi.org/10.1094/PHYTO.2001.91.10.1001

  • Shoemaker, R. A. (1981). Changes in taxonomy and nomenclature of important genera of plant pathogens. Annual Review of Phytopathology. https://doi.org/10.1146/annurev.py.19.090181.001501

  • Sonka, S. T., Bauer, M. E., & Cherry, E. T. (1997). Precision agriculture in the 21st century: Geospatial and information technologies in crop management. National Academy Press.

    Google Scholar 

  • Sutherst, R. (1993). Role of modelling in sustainable pest management. In S. Corey, D. Dall, & W. Milne (Eds.), Pest control and sustainable agriculture (pp. 66–71). CSIRO.

    Google Scholar 

  • Teng, P. S. (1981). Validation of computer models of plant disease epidemics: A review of philosophy and methodology/Zuverlässigkeit von Computermodellen für Epidemien von Pflanzenkrankheiten: Ein Überblick über Grundgedanken und Methodik. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 88, 49.

    Google Scholar 

  • Teng, P. S. (1985). A comparison of simulation approaches to epidemic modeling. Annual Review of Phytopathology. https://doi.org/10.1146/annurev.py.23.090185.002031

  • Teng, P. S., Blackie, M. J., & Close, R. C. (1980). Simulation of the barley leaf rust epidemic: Structure and validation of BARSIM-I. Agricultural Systems. https://doi.org/10.1016/0308-521X(80)90001-3

  • Van der Plank, J. E. (1960). Analysis of epidemics. In H. JG & C. EB (Eds.), Plant pathology: An advance treatise (Vol. 3, pp. 229–289). Academic.

    Chapter  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases: Epidemics and control. Academic.

    Google Scholar 

  • Van Maanen, A., & Xu, X. M. (2003). Modelling plant disease epidemics. European Journal of Plant Pathology, 109, 669–682. https://doi.org/10.1023/A:1026018005613

    Article  Google Scholar 

  • Waggoner, P. E. (1960). Forecasting epidemics. In H. JG & D. AE (Eds.), Plant pathology, an advanced treatise (pp. 291–313III). Academic.

    Chapter  Google Scholar 

  • Waggoner, P. E., & Horsfall, J. G. (1969). E.P.I.D.E.M.: A simulator of plant disease written for a computer. Connecticut Agricultural Experiment Station Bulletin USA, 698.

    Google Scholar 

  • Waggoner, P. E., Horsfall, J. G., & Lukens, R. J. (1969). A simulator of southern corn leaf blight (Bulletin of the Connecticut agricultural). Wiley.

    Google Scholar 

  • Wainwright, J., & Mulligan, M. (2004). Environmental modeling finding simplicity in complexity. Wiley.

    Google Scholar 

  • Walklate, P. J., & Cross, J. V. (2010). A webpage calculator for dose rate adjustment of orchard spraying products. Aspects of Applied Biology, 99, 359–366.

    Google Scholar 

  • Xu, X. M., & Ridout, M. S. (1996). Analysis of disease incidence data using a stochastic spatial-temporal simulation model. Aspects of Applied Biology, 46, 155–158.

    Google Scholar 

  • Yuen, J. E., & Hughes, G. (2002). Bayesian analysis of plant disease prediction. Plant Pathology. https://doi.org/10.1046/j.0032-0862.2002.00741.x

  • Zadoks, J. C. (1971). Systems analysis and the dynamics of epidemics. Phytopathology, 61, 600–610.

    Google Scholar 

  • Zadoks, J. C., & Rabbinge, R. (1985). Modelling to a purposed. In C. A. Gilligan (Ed.), Advances in plant pathology (Mathematical modelling of crop diseases) (Vol. 3, pp. 231–244). Academic.

    Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fedele, G., Bove, F., Rossi, V. (2023). Models in Crop Protection. In: Cammarano, D., van Evert, F.K., Kempenaar, C. (eds) Precision Agriculture: Modelling. Progress in Precision Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-031-15258-0_3

Download citation

Publish with us

Policies and ethics