Skip to main content

Process-Based Modelling of Soil–Crop Interactions for Site-Specific Decision Support in Crop Management

  • Chapter
  • First Online:
Precision Agriculture: Modelling

Part of the book series: Progress in Precision Agriculture ((PRPRA))

Abstract

Spatial variation within fields influences soil water, nutrient and crop growth dynamics. Depending on climatic conditions, spatial patterns of yield are often not stable over time because weather conditions favour different processes from year to year. The same holds for rapidly fluctuating soil processes like water and nitrogen dynamics, while other soil properties remain relatively stable over a few years. Estimation of an appropriate irrigation or fertilizer amount in relation to site-specific yield expectations is essential to optimize water or nutrient use efficiency. On the other hand, farmers’ aims are often in conflict with the interest of water suppliers to keep nutrient loads below the drinking water standard. Process-based agro-ecosystem models can help to reflect the spatio-temporal dynamics in soil–crop–atmosphere relations to transcribe spatial within-field variation of temporally stable soil properties into timely and spatially adapted management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen, P., & Hansen, S. (2000). Daisy: An open soil–crop–atmosphere system model. Environmental Modelling and Software, 15, 313–330.

    Article  Google Scholar 

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.

    Article  Google Scholar 

  • Addiscott, T. M., & Wagenet, R. J. (1985). Concepts of solute leaching in soils: A review of modelling approaches. Journal of Soil Science, 36, 411–424.

    Article  CAS  Google Scholar 

  • Adeyemi, O., Grove, I., Peets, S., & Norton, T. (2017). Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 8(3), 353.

    Article  Google Scholar 

  • Aggarval, P. K. (1995). Uncertainties in crop, soil and weather inputs used in growth models: Implications for simulated outputs and their applications. Agricultural Systems, 48, 361–384.

    Article  Google Scholar 

  • Araya, S., Lyle, G., Lewis, M., & Ostendorf, B. (2016). Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity. Ecological Indicators, 60, 1263–1272.

    Article  Google Scholar 

  • Baier, W., & Robertson, G. W. (1968). The performance of soil moisture estimates as compared with the direct use of climatological data for estimating crop yields. Agricultural Meteorology, 5(1), 17–31.

    Article  Google Scholar 

  • Basso, B., Cammarano, D., Chen, D., Cafiero, G., Amato, M., Bitella, G., Rossi, R., & Basso, F. (2009). Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in southern Italy. Journal of Agronomy and Crop Science, 195, 301–312.

    Article  Google Scholar 

  • Basso, B., Cammarano, D., Troccoli, A., Chen, D., & Ritchie, J. T. (2010). Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European Journal of Agronomy, 33, 132–138.

    Article  Google Scholar 

  • Basso, B., Ritchie, J. T., Cammarano, D., & Sartori, L. (2011). A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. European Journal of Agronomy, 35, 215–222.

    Article  Google Scholar 

  • Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of the Total Environment, 545–546, 227–235.

    Article  Google Scholar 

  • Biernath, C., Gayler, S., Bittner, S., Klein, C., Högy, P., Fangmeier, A., & Priesack, E. (2011). Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open top chambers. European Journal of Agronomy, 35, 71–82.

    Article  Google Scholar 

  • Bingham, I. J., & Wu, L. (2011). Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis. European Journal of Agronomy, 34, 181–189.

    Article  Google Scholar 

  • Bormann, H. (2009). Analysis of possible climate impacts of climate change on the hydrological regimes of different regions in Germany. Advances in Geosciences, 21, 3–11.

    Article  Google Scholar 

  • Bormann, H. (2012). Assessing the soil texture-specific sensitivity of simulated soil moisture to projected climate change by SVAT modelling. Geoderma, 195, 73–83.

    Article  Google Scholar 

  • Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin, B., & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332.

    Article  Google Scholar 

  • Cai, G., Vanderborght, J., Couvreur, V., Mboh, C. M., & Vereecken, H. (2017). Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone Journal, 17, 160125.

    Google Scholar 

  • de Wit, C. (1965). Photosynthesis of leaf canopies. Wageningen Inst Biol Chem Res Field Crops Herb.

    Google Scholar 

  • DeJonge, K. C., Kaleita, A. L., & Thorp, K. R. (2007). Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa. Agricultural Water Management, 92, 99–109.

    Article  Google Scholar 

  • Delgoda, D., Malano, H., Saleem, S. K., & Halgamuge, M. N. (2016). Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environmental Modelling and Software, 78, 40–53.

    Article  Google Scholar 

  • Delin, S., & Berglund, K. (2005). Management zones classified with respect to drought and waterlogging. Precision Agriculture, 6, 321–340.

    Article  Google Scholar 

  • EC (European Community). (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal, L327, 1–73.

    Google Scholar 

  • EEC (European Economic Community). (1991). Council Regulation (EEC) No. 2092/91 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. Official Journal, L198, 1–15.

    Google Scholar 

  • Egea, G., Díaz-Espejo, A., & Fernández, J. E. (2015). Numerical simulation of soil water dynamics as a decision support system for irrigation management in drip-irrigated hedgerow olive orchards. In J. Stafford (Ed.), Precision agriculture ’15 (pp. 503–510). Wageningen Academic Publishers.

    Google Scholar 

  • Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., Olesen, J. E., van Ittersum, M. K., Janssen, S., Rivington, M., Semenov, M. A., Wallach, D., Porter, J. R., Stewart, D., Verhagen, J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72, 287–303.

    Article  Google Scholar 

  • Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield (Simulation monograph). Pudoc.

    Google Scholar 

  • Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., de Rosnay, P., Dirmeyer, P., Jackson, R. B., Kabat, P., Kleidon, A., Lilly, A., & Pitman, A. J. (2001). Modeling root water uptake in hydrological and climate models. Bulletin of the American Meteorological, 82, 2797–2809.

    Article  Google Scholar 

  • Florin, M. J., McBratney, A. B., Whelan, B. M., & Minasny, B. (2011). Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precision Agriculture, 12, 421–438.

    Article  Google Scholar 

  • Gaiser, T., Perkons, U., Küpper, P. M., Kautz, T., Uteau-Puschmann, D., Ewert, F., Enders, A., & Krauss, G. (2013). Modeling biopore effects on root growth and biomass production on soils with pronounced subsoil clay accumulation. Ecological Modelling, 256, 6–15.

    Article  Google Scholar 

  • Geesing, D., Diacono, M., & Schmidhalter, U. (2014). Site-specific effects of variable water supply and nitrogen fertilization on winter wheat. Journal of Plant Nutrition and Soil Science, 177, 509–523.

    Article  CAS  Google Scholar 

  • Greminger, P. J., Sud, K., & Nielsen, D. R. (1985). Spatial variability of field-measured soil-water characteristics. Soil Science Society of America Journal, 49, 1075–1082.

    Article  Google Scholar 

  • He, D., & Wang, E. (2019). On the relation between soil water holding capacity and dryland crop productivity. Geoderma, 353, 11–24.

    Article  Google Scholar 

  • He, D., Oliver, Y., & Wang, E. (2021). Predicting plant available water holding capacity of soils from crop yield. Plant and Soil, 459, 315–328.

    Article  CAS  Google Scholar 

  • Heermann, D. F., Diker, K., Buchleiter, G. W., & Brodahl, M. K. (2003). The value of additional data to locate potential management zones in commercial corn fields under center pivot irrigation. In J. Stafford & A. Werner (Eds.), Precision agriculture ’03. Proceedings 4th European conference precision agriculture (pp. 279–284). Wageningen Academic Publishers.

    Google Scholar 

  • Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B. T., Kersebaum, K. C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., et al. (2016). Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One, 11(4), e0151782.

    Article  Google Scholar 

  • Hunt, L. A., & Pararajasingham, S. (1995). CROPSIM-wheat – A model describing the growth and development of wheat. Canadian Journal of Plant Science, 75, 619–632.

    Article  Google Scholar 

  • Jamieson, P., Semenov, M., Brooking, I., & Francis, G. (1998). Sirius: A mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8, 161–179.

    Article  Google Scholar 

  • Jansson, P.-E., & Moon, D. S. (2001). A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling and Software, 16, 37–46.

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.

    Article  Google Scholar 

  • Kaspar, T. C., Colvin, T. S., Jaynes, D. B., Karlen, D. L., James, D. E., & Meek, D. W. (2003). Relationship between six years of corn yields and terrain attributes. Precision Agriculture, 4, 87–101.

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288.

    Article  Google Scholar 

  • Kempen, B., Brus, D. J., Stoorvogel, J. J., Heuvelink, G. B. M., & de Vries, F. (2012). Efficiency comparison of conventional and digital soil mapping for updating soil maps. Soil Science Society of America Journal, 76, 2097–2115.

    Article  CAS  Google Scholar 

  • Kersebaum, C. (1995). Application of a simple management model to simulate water and nitrogen dynamics. Ecological Modelling, 81, 145–156.

    Article  CAS  Google Scholar 

  • Kersebaum, K. C. (2011). Special features of the HERMES model and additional procedures for parameterization, calibration, validation, and applications In L. R. Ahuja & L. Ma (Eds.), Methods of introducing system models into agricultural research. Advances in agricultural systems modeling series 2 (pp. 65–94). ASA CSSA SSSA.

    Google Scholar 

  • Kersebaum, K. C., & Beblik, A. J. (2001). Performance of a nitrogen dynamics model applied to evaluate agricultural management practices. In M. Shaffer, L. Ma, & S. Hansen (Eds.), Modeling carbon and nitrogen dynamics for soil management (pp. 551–571). CRC Press.

    Google Scholar 

  • Kersebaum, K. C., & Nendel, C. (2014). Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. European Journal of Agronomy, 52, 22–32.

    Article  CAS  Google Scholar 

  • Kersebaum, K. C., & Richter, J. (1991). Modelling nitrogen dynamics in a soil-plant system with a simple model for advisory purposes. Fertilizer Research, 27, 273–281.

    Article  CAS  Google Scholar 

  • Kersebaum, K. C., Reuter, H. I., Lorenz, K., & Wendroth, O. (2002). Modelling crop growth and nitrogen dynamics for advisory purposes regarding spatial variability. In L. J. Ahuja, L. Ma, & T. A. Howell (Eds.), Agricultural system models in field research and technology transfer (pp. 229–252). Lewis Publishers.

    Google Scholar 

  • Kersebaum, K. C., Lorenz, K., Reuter, H. I., Wendroth, O., Giebel, A., & Schwarz, J. (2003). Site specific nitrogen fertilisation recommendations based on simulation. In J. Stafford & A. Werner (Eds.), Precision agriculture. Proceedings 4th European conference on precision agriculture, Berlin (pp. 309–314). Wageningen Academic Publishers.

    Google Scholar 

  • Kersebaum, K. C., Lorenz, K., Reuter, H. I., Schwarz, J., Wegehenkel, M., & Wendroth, O. (2005a). Operational use of agrometeorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Physics and Chemistry of the Earth, 30, 59–67.

    Article  Google Scholar 

  • Kersebaum, K. C., Reuter, H. I., Lorenz, K., & Wendroth, O. (2005b). Long term simulation of soil/crop interactions to estimate management zones and consequences for site specific nitrogen management considering water protection. In J. Stafford (Ed.), Precision agriculture ’05. Proceedings 5th European conference on precision agriculture, Uppsala, Schweden (pp. 795–802). Wageningen Academic Publishers.

    Google Scholar 

  • Kersebaum, K. C., Matzdorf, B., Kiesel, J., Piorr, A., & Steidl, J. (2006). Model-based evaluation of agro-environmental measures in the federal state of Brandenburg (Germany) concerning N pollution of groundwater and surface water. Journal of Plant Nutrition and Soil Science, 169, 352–359.

    Article  CAS  Google Scholar 

  • Kersebaum, K. C., Reuter, H. I., Lorenz, K., & Wendroth, O. (2007). Model-based nitrogen fertilization considering agro-meteorological data. In T. W. Bruulsema (Ed.), Managing crop nitrogen for weather. Proceedings of the Soil Science Society of America; Symposium on integrating weather variability into nitrogen recommendations, 15 November 2006, Indianapolis, IN (pp. 1–9). IPNI.

    Google Scholar 

  • Kersebaum, K. C., Boote, K. J., Jorgenson, J. S., Nendel, C., Bindi, M., Frühauf, C., Gaiser, T., Hoogenboom, G., Kollas, C., Olesen, J. E., Rötter, R. P., Ruget, F., Thorburn, P. J., Trnka, M., & Wegehenkel, M. (2015). Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling and Software, 72, 402–417.

    Article  Google Scholar 

  • Kersebaum, K. C., Wallor, E., Lorenz, K., Beaudoin, N., Constantin, J., & Wendroth, O. (2019). Modelling cropping systems with HERMES – Model capability, deficits, and data requirements. In O. Wendroth, R. J. Lascano, & L. Ma (Eds.), Bridging among disciplines by synthesizing soil and plant processes (Advances in agricultural systems modeling, Vol. 8, pp. 103–126). ASA, CSSA, and SSSA.

    Google Scholar 

  • Kim, S.-H., Yang, Y., Timlin, D. J., Fleisher, D. H., Dathe, A., Reddy, V. R., & Staver, K. (2012). Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agronomy Journal, 104, 1523–1537.

    Article  Google Scholar 

  • Kimball, B. A., Boote, K. J., Hatfield, J. L., Ahuja, L. R., Stöckle, C., Archontoulis, S., Baron, C., Basso, B., Bertuzzi, P., Constantin, J., Deryng, D., Dumont, B., Durand, J.-L., Ewert, F., Gaiser, T., Gayler, S., Hoffmann, M. P., Jiang, Q., Kim, S.-H., et al. (2019). Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 271, 264–284.

    Article  Google Scholar 

  • Kirkegaard, J. A., Lilley, J. M., Howe, G. N., & Graham, J. M. (2007). Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research, 58(4), 303–315.

    Article  Google Scholar 

  • Kravchenko, A. N., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92, 75–83.

    Article  Google Scholar 

  • Kravchenko, A. N., & Bullock, D. G. (2002). Spatial variability of soybean quality data as a function of field topography: I. Spatial data analysis. Crop Science, 42(3), 804–812.

    Google Scholar 

  • Kumhálová, J., Kumhála, F., Kroulík, M., & Matějková, S. (2011). The impact of topography on soil properties and yield and the effects of weather conditions. Precision Agriculture, 12, 813–830.

    Article  Google Scholar 

  • Li, Y., Guan, K., Schnitkay, G. D., DeLucia, E., & Peng, B. (2019). Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biology, 25, 2325–2337.

    Article  Google Scholar 

  • Lizaso, J. I., Boote, K. J., Jones, J. W., Porter, C. H., Echarte, L., Westgate, M. E., & Sonohat, G. (2011). CSM-IXIM: A new maize simulation model for DSSAT version 4.5. Agronomy Journal, 103, 766–779.

    Article  Google Scholar 

  • Maestrini, B., & Basso, B. (2018). Predicting spatial patterns of within-field crop yield variability. Field Crops Research, 219, 106–112.

    Article  Google Scholar 

  • Manning, G., Fuller, L. G., Eilers, R. G., & Florinsky, I. (2001). Soil moisture and nutrient variation within an undulating Manitoba landscape. Canadian Journal of Soil Science, 81(3), 449–458.

    Article  CAS  Google Scholar 

  • Martinez-Feria, R. A., & Basso, B. (2020). Unstable crop yields reveal opportunities for site-specific adaptations to climate variability. Scientific Reports, 10, 2885.

    Article  CAS  Google Scholar 

  • McCarthy, A. C., Hancock, N. H., & Raine, S. R. (2010). VARIwise: A general-purpose adaptive control simulation framework for spatially and temporally varied irrigation at sub-field scale. Computers and Electronics in Agriculture, 70, 117–128.

    Article  Google Scholar 

  • McDonald, G. K., Taylor, J. D., Verbyla, A., & Kuchel, H. (2013). Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop & Pasture Science, 63, 1043–1065.

    Article  Google Scholar 

  • Michalczyk, A., Kersebaum, K. C., Roelcke, M., Hartmann, T., Yue, S. C., Chen, X. P., & Zhang, F. S. (2014). Model-based optimisation of nitrogen and water management for wheat–maize systems in the North China Plain. Nutrient Cycling in Agroecosystems, 98, 203–222.

    Article  CAS  Google Scholar 

  • Monteith, J. (1965). Light distribution and photosynthesis in field crops. Annals of Botany, 29, 17–37.

    Article  Google Scholar 

  • Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.

    Article  Google Scholar 

  • Morari, F., Zanella, V., Gobbo, S., Bindi, M., Sartori, L., Pasqui, M., Mosca, G., & Ferrise, R. (2021). Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat. Precision Agriculture, 22, 75–98.

    Article  CAS  Google Scholar 

  • Morgan, C. L. S., Norman, J. M., & Lowery, B. (2003). Estimating plant-available water across a field with an inverse yield model. Soil Science Society of America Journal, 67, 620–629.

    CAS  Google Scholar 

  • Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Chapter four—Delineation of soil management zones for variable−rate fertilization: A review. Advances in Agronomy, 143, 175–245.

    Article  Google Scholar 

  • Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K.-O., & Wieland, R. (2011). The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, 222, 1614–1625.

    Article  CAS  Google Scholar 

  • Pachepsky, Y., & Acock, B. (1998). Stochastic imaging of soil parameters to assess variability and uncertainty of crop yield estimates. Geoderma, 85(2), 213–229.

    Article  Google Scholar 

  • Pennock, D. J., & Frick, A. H. (2001). The role of field studies in landscape-scale applications of process models: An example of soil redistribution and soil organic carbon modeling using CENTURY. Soil and Tillage Research, 58(3), 183–191.

    Article  Google Scholar 

  • Postma, J. A., Jaramillo, R. E., & Lynch, J. P. (2008). Towards modeling the function of root traits for enhancing water acquisition by crops. In L. R. Ahuja, V. R. Reddy, S. A. Saseendran, & Q. Yu (Eds.), Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes (pp. 251–276). ASA-CSA-SSSA.

    Google Scholar 

  • Reuter, H. I. (2004). Spatial crop and soil landscape processes in a loess landscape with respect to relief information [Ph.D. thesis]. University Hannover, Horizonte 16, Der Andere Verlag, Tönning, p. 286.

    Google Scholar 

  • Reuter, H. I., Kersebaum, K. C., & Wendroth, O. (2005). Modelling of solar radiation influenced by topographic shading––Evaluation and application for precision farming. Physics and Chemistry of the Earth, 30(1–3), 143–149.

    Article  Google Scholar 

  • Roy, P. C., Guber, A., Abouali, M., Nejadhashemi, A. P., Deb, K., & Smucker, A. J. M. (2019). Simulation optimization of water usage and crop yield using precision irrigation. In K. Deb, E. Goodman, C. A. Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Evolutionary multi-criterion optimization (Lecture notes in computer science) (Vol. 11411, pp. 695–706). Springer.

    Chapter  Google Scholar 

  • Sadhukhan, D., Qi, Z., Zhang, T., Tan, C. S., Ma, L., & Andales, A. A. (2019). Development and evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural fields. Environmental Modelling and Software, 113, 48–58.

    Article  Google Scholar 

  • Schmidhalter, U., Maidel, F. X., Heuwinkel, H., Demmel, M., Auernhammer, H., Noack, P. O., et al. (2008). Precision farming—Adaptation of land use management to small scale heterogeneity. In P. Schröder, J. Pfadenhauer, & J. C. Munch (Eds.), Perspectives for agroecosystem management (pp. 121–200). Elsevier.

    Chapter  Google Scholar 

  • Si, B. C., & Farrell, R. E. (2004). Scale-dependent relationship between wheat yield and topographic indices: A wavelet approach. Soil Science Society of America Journal, 68(2), 577–587.

    CAS  Google Scholar 

  • Stafford, J. V., Lark, R. M., & Bolam, H. C. (1999). Using yield maps to regionalize fields into potential management units. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 4th conference on precision agriculture (pp. 225–237). ASA-CSSA-SSSA.

    Google Scholar 

  • Steudle, E., & Peterson, C. A. (1998). How does water get through roots? Journal of Experimental Botany, 49, 775–788.

    CAS  Google Scholar 

  • Stöckle, C., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18, 289–307.

    Article  Google Scholar 

  • Stoorvogel, J. J., Kooistra, L., & Bouma, J. (2015). Managing soil variability at different spatial scales as a basis for precision agriculture. In R. Lal & B. A. Stewart (Eds.), Soil-specific farming: Precision agriculture (Advances in soil science, pp. 37–71). CRC Press.

    Google Scholar 

  • Thorp, K. R., DeJonge, K. C., Kaleita, A. L., Batchelor, W. D., & Paz, J. O. (2008). Methodology for the use of DSSAT models for precision agriculture decision support. Computers and Electronics in Agriculture, 64, 276–285.

    Article  Google Scholar 

  • Timlin, D. J., Pachepsky, Y., Snyder, V. A., & Bryant, R. B. (1998). Spatial and temporal variability of corn grain yield on a hillslope. Soil Science Society of America Journal, 62, 764–773.

    Article  CAS  Google Scholar 

  • Timlin, D., Pachepsky, Y., Walthall, C., & Loechel, S. (2001). The use of a water budget model and yield maps to characterize water availability in a landscape. Soil and Tillage Research, 58, 219–231.

    Article  Google Scholar 

  • Trangmar, B. B., Yost, R. J., & Uehara, G. (1985). Application of geostatistic to spatial studies of soil properties. Advances in Agronomy, 38, 65–91.

    Google Scholar 

  • Wallor, E., Kersebaum, K. C., Ventrella, D., Bindi, M., Cammarano, D., Coucheney, E., Gaiser, T., Garofalo, P., Giglio, L., Giola, P., Hoffmann, M. P., Iocola, I., Lana, M., Lewan, E., Maharjan, G. R., Moriondo, M., Mula, L., Nendel, C., Pohankova, E., et al. (2018). The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research, 228, 1–19.

    Article  Google Scholar 

  • Ward, N. K., Maureir, F., Stöckl, C. O., Brooks, E. S., Painter, K. M., Yourek, M. A., & Gasch, C. K. (2018). Simulating field-scale variability and precision management with a 3D hydrologic cropping systems model. Precision Agriculture, 19, 293–313.

    Article  Google Scholar 

  • Wassenaar, T., Lagacherie, P., Legros, J. P., & Rounsevell, M. D. A. (1999). Modelling wheat yield responses to soil and climate variability at the regional scale. Climate Research, 11(3), 209–220.

    Article  Google Scholar 

  • Wendroth, O., Pohl, W., Koszinski, S., Rogasik, H., Ritsema, C. J., & Nielsen, D. R. (1999). Spatio-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. Journal of Hydrology, 215, 38–58.

    Article  Google Scholar 

  • Williams, J., Jones, C., Kiniry, J., & Spanel, D. (1989). The EPIC crop growth-model. Transactions of the ASAE. American Society of Agricultural Engineers, 32, 497–511.

    Article  Google Scholar 

  • Wu, L., & Kersebaum, K. C. (2008). Modeling water and nitrogen interaction responses and their consequences in crop models. In L. R. Ahuja, V. R. Reddy, S. A. Saseendran, & Q. Yu (Eds.), Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes (Advances in agricultural systems modeling 1) (pp. 215–249). ASA-CSA-SSSA.

    Google Scholar 

  • Wu, L., McGechan, M. B., McRoberts, N., Baddeley, J. A., & Watson, C. A. (2007). SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling – Model description. Ecological Modelling, 200, 343–359.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Kersebaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kersebaum, K.C., Wallor, E. (2023). Process-Based Modelling of Soil–Crop Interactions for Site-Specific Decision Support in Crop Management. In: Cammarano, D., van Evert, F.K., Kempenaar, C. (eds) Precision Agriculture: Modelling. Progress in Precision Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-031-15258-0_2

Download citation

Publish with us

Policies and ethics