Skip to main content

Adaptive Function Value Warping for Surrogate Model Assisted Evolutionary Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

Surrogate modelling techniques have the potential to reduce the number of objective function evaluations needed to solve black-box optimization problems. Most surrogate modelling techniques in use with evolutionary algorithms today do not preserve the desirable invariance to order-preserving transformations of objective function values of the underlying algorithms. We propose adaptive function value warping as a tool aiming to reduce the sensitivity of algorithm behaviour to such transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasnejad, A.: Adaptive function value warping for surrogate model assisted evolutionary optimization. Master’s thesis, Faculty of Computer Science, Dalhousie University (2021)

    Google Scholar 

  2. Bagheri, S., Konen, W., Emmerich, M., Bäck, T.: Self-adjusting parameter control for surrogate-assisted constrained optimization under limited budgets. Appl. Soft Comput. 61, 377–393 (2017)

    Article  Google Scholar 

  3. Bajer, L., Pitra, Z., Repický, J., Holeňa, M.: Gaussian process surrogate models for the CMA evolution strategy. Evol. Comput. 27(4), 665–697 (2019)

    Article  Google Scholar 

  4. Hansen, N.: The CMA evolution strategy: a tutorial. arxiv:1604.00772 (2016)

  5. Hansen, N.: A global surrogate assisted CMA-ES. In: Genetic and Evolutionary Computation Conference – GECCO 2019, pp. 664–672. ACM Press (2019)

    Google Scholar 

  6. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  8. Kayhani, A., Arnold, D.V.: Design of a surrogate model assisted (1 + 1)-ES. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 16–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_2

    Chapter  Google Scholar 

  9. Kern, S., Hansen, N., Koumoutsakos, P.: Local meta-models for optimization using evolution strategies. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 939–948. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_95

    Chapter  Google Scholar 

  10. Kronberger, G., Kommenda, M.: Evolution of covariance functions for gaussian process regression using genetic programming. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8111, pp. 308–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8_39

    Chapter  Google Scholar 

  11. Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-based optimizers need comparison-based surrogates. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_37

    Chapter  Google Scholar 

  12. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy. In: Genetic and Evolutionary Computation Conference – GECCO 2012, pp. 321–328. ACM Press (2012)

    Google Scholar 

  13. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive surrogate model exploitation in self-adaptive surrogate-assisted CMA-ES. In: Genetic and Evolutionary Computation Conference – GECCO 2013, pp. 439–446. ACM Press (2013)

    Google Scholar 

  14. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    Article  MathSciNet  Google Scholar 

  15. Repický, J., Holeňa, M., Pitra, Z.: Automated selection of covariance function for Gaussian process surrogate models. In: Krajci, S. (ed.) Information Technologies: Applications and Theory – ITAT 2018, pp. 64–71. CEUR Workshop Proceedings (2018)

    Google Scholar 

  16. Roman, I., Santana, R., Mendiburu, A., Lozano, J.A.: Evolving Gaussian process kernels from elementary mathematical expressions for time series extrapolation. Neurocomputing 462, 426–439 (2021)

    Article  Google Scholar 

  17. Snelson, E., Rasmussen, C.E., Ghahramani, Z.: Warped Gaussian processes. In: Thrun, S., et al. (eds.) Conference on Neural Information Processing Systems – NeurIPS. pp. 337–344. MIT Press (2003)

    Google Scholar 

  18. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 21–31. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_3

    Chapter  Google Scholar 

  19. Toal, L., Arnold, D.V.: Simple surrogate model assisted optimization with covariance matrix adaptation. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 184–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_13

    Chapter  Google Scholar 

  20. Yang, J., Arnold, D.V.: A surrogate model assisted \((1+1)\)-ES with increased exploitation of the model. In: Genetic and Evolutionary Computation Conference – GECCO 2019, pp. 727–735. ACM Press (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbasnejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbasnejad, A., Arnold, D.V. (2022). Adaptive Function Value Warping for Surrogate Model Assisted Evolutionary Optimization. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics