Skip to main content

Iron Deficiency, Anemia, and the Immune System

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

Abstract

Iron homeostasis is critical for human health, because both too little and too much iron may have severe clinical consequences. No other element can replace iron as component of hemoglobin and in iron-containing enzymes such as cytochromes. Iron deficiency (ID) results in anemia, impaired cell metabolism, and organ dysfunction. Conversely, when surplus iron exceeds the capacity of its storage protein ferritin, the redox instability of free iron generates oxygen radicals, which can damage parenchymal cells and inner organs.

Iron deficiency encompasses two pathophysiological distinct forms, absolute and functional iron deficiency. Absolute iron deficiency is the most frequent cause of anemia worldwide. It is therefore not only a common differential diagnosis and cause for further diagnostic workup in individual patients, but also a major public health concern. Functional iron deficiency in contrast results from immune-driven iron retention in monocytes and macrophages and causes iron-restricted erythropoiesis, anemia of inflammation, and, potentially, immune dysfunction.

Apart from the erythropoietic system, the immune system has an essential requirement of iron, too. Therefore, iron deficiency from different causes impairs immune cell proliferation and the defense against invading pathogens and malignant cells. Vice versa, iron overload facilitates the growth of microbes, thereby impairing innate immune mechanisms. Reflecting on these complex interactions, this chapter summarizes the basic principles of iron deficiency with a focus on our current understanding of its effects on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61. https://doi.org/10.1016/j.cell.2016.12.034.

    Article  CAS  Google Scholar 

  2. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907–16. https://doi.org/10.1016/S0140-6736(15)60865-0.

    Article  CAS  Google Scholar 

  3. Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The role of iron regulation in immunometabolism and immune-related disease. Front Mol Biosci. 2019;6:116. https://doi.org/10.3389/fmolb.2019.00116.

    Article  CAS  Google Scholar 

  4. Nairz M, Theurl I, Wolf D, Weiss G. Iron deficiency or anemia of inflammation? Differential diagnosis and mechanisms of anemia of inflammation. Wien Med Wochenschr. 2016;166(13–14):411–23. https://doi.org/10.1007/s10354-016-0505-7.

    Article  Google Scholar 

  5. Auerbach M, Adamson JW. How we diagnose and treat iron deficiency anemia. Am J Hematol. 2016;91(1):31–8. https://doi.org/10.1002/ajh.24201.

    Article  Google Scholar 

  6. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50. https://doi.org/10.1182/blood-2018-06-856500.

    Article  CAS  Google Scholar 

  7. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. https://doi.org/10.1182/blood-2018-05-815944.

    Article  CAS  Google Scholar 

  8. Shaw JG, Friedman JF. Iron deficiency anemia: focus on infectious diseases in lesser developed countries. Anemia. 2011;2011:260380. https://doi.org/10.1155/2011/260380.

    Article  Google Scholar 

  9. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24. https://doi.org/10.1182/blood-2013-06-508325.

    Article  CAS  Google Scholar 

  10. Armitage AE, Moretti D. The importance of iron status for young children in low- and middle-income countries: a narrative review. Pharmaceuticals (Basel). 2019;12(2) https://doi.org/10.3390/ph12020059.

  11. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–43. https://doi.org/10.1016/S0140-6736(06)67962-2.

    Article  CAS  Google Scholar 

  12. Soofi S, Cousens S, Iqbal SP, Akhund T, Khan J, Ahmed I, et al. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: a cluster-randomised trial. Lancet. 2013;382(9886):29–40. https://doi.org/10.1016/S0140-6736(13)60437-7.

    Article  CAS  Google Scholar 

  13. Nairz M, Ferring-Appel D, Casarrubea D, Sonnweber T, Viatte L, Schroll A, et al. Iron regulatory proteins mediate host resistance to salmonella infection. Cell Host Microbe. 2015;18(2):254–61. https://doi.org/10.1016/j.chom.2015.06.017.

    Article  CAS  Google Scholar 

  14. Gwamaka M, Kurtis JD, Sorensen BE, Holte S, Morrison R, Mutabingwa TK, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54(8):1137–44. https://doi.org/10.1093/cid/cis010.

    Article  CAS  Google Scholar 

  15. Kabyemela ER, Fried M, Kurtis JD, Mutabingwa TK, Duffy PE. Decreased susceptibility to plasmodium falciparum infection in pregnant women with iron deficiency. J Infect Dis. 2008;198(2):163–6. https://doi.org/10.1086/589512.

    Article  Google Scholar 

  16. Hill DL, Carr EJ, Rutishauser T, Moncunill G, Campo JJ, Innocentin S, et al. Immune system development varies according to age, location, and anemia in African children. Sci Transl Med. 2020;12(529) https://doi.org/10.1126/scitranslmed.aaw9522.

  17. Petzer V, Theurl I, Weiss G. Established and emerging concepts to treat imbalances of iron homeostasis in inflammatory diseases. Pharmaceuticals (Basel). 2018;11(4) https://doi.org/10.3390/ph11040135.

  18. Culleton BF, Manns BJ, Zhang J, Tonelli M, Klarenbach S, Hemmelgarn BR. Impact of anemia on hospitalization and mortality in older adults. Blood. 2006;107(10):3841–6. https://doi.org/10.1182/blood-2005-10-4308.

    Article  CAS  Google Scholar 

  19. Andro M, Le Squere P, Estivin S, Gentric A. Anaemia and cognitive performances in the elderly: a systematic review. Eur J Neurol. 2013;20(9):1234–40. https://doi.org/10.1111/ene.12175.

    Article  CAS  Google Scholar 

  20. Homer MJ, Aguilar-Delfin I, Telford SR 3rd, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451–69. https://doi.org/10.1128/cmr.13.3.451-469.2000.

    Article  CAS  Google Scholar 

  21. Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev. 2015;39(4):592–630. https://doi.org/10.1093/femsre/fuv009.

    Article  Google Scholar 

  22. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13(5):509–19. https://doi.org/10.1016/j.chom.2013.04.010.

    Article  CAS  Google Scholar 

  23. Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol. 2004;2(12):946–53. https://doi.org/10.1038/nrmicro1046.

    Article  CAS  Google Scholar 

  24. Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G. Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun Rev. 2012;11(12):883–9. https://doi.org/10.1016/j.autrev.2012.03.003.

    Article  CAS  Google Scholar 

  25. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338(6108):768–72. https://doi.org/10.1126/science.1224577.

    Article  CAS  Google Scholar 

  26. Weiss G. Iron and immunity: a double-edged sword. Eur J Clin Investig. 2002;32(Suppl 1):70–8. https://doi.org/10.1046/j.1365-2362.2002.0320s1070.x.

    Article  CAS  Google Scholar 

  27. Arezes J, Foy N, McHugh K, Sawant A, Quinkert D, Terraube V, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14):1473–7. https://doi.org/10.1182/blood-2018-06-857995.

    Article  CAS  Google Scholar 

  28. Weigel KJ, Lynch SG, LeVine SM. Iron chelation and multiple sclerosis. ASN Neuro. 2014;6(1):e00136. https://doi.org/10.1042/AN20130037.

    Article  CAS  Google Scholar 

  29. Roth-Walter F, Pacios LF, Bianchini R, Jensen-Jarolim E. Linking iron-deficiency with allergy: role of molecular allergens and the microbiome. Metallomics. 2017;9(12):1676–92. https://doi.org/10.1039/c7mt00241f.

    Article  CAS  Google Scholar 

  30. Savy M, Edmond K, Fine PE, Hall A, Hennig BJ, Moore SE, et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J Nutr. 2009;139(11):2154S–218S. https://doi.org/10.3945/jn.109.105312.

    Article  CAS  Google Scholar 

  31. Zimmermann M, Stoffel N, Uyoga M, Karanja S. Effects of anaemia and iron supplementation on vaccine response: a birth cohort study and a randomized trial follow-up study in Kenyan infants. Curr Dev Nutr. 2020;4(Supplement_2):1115. https://doi.org/10.1093/cdn/nzaa054_187.

    Article  Google Scholar 

  32. WHO. Fact sheet - Children: improving survival and well-being. https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality2020.

  33. Eiselt J, Kielberger L, Rajdl D, Racek J, Pazdiora P, Malanova L. Previous vaccination and age are more important predictors of immune response to influenza vaccine than inflammation and iron status in dialysis patients. Kidney Blood Press Res. 2016;41(2):139–47. https://doi.org/10.1159/000443416.

    Article  CAS  Google Scholar 

  34. Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol. 2008;6(7):541–52. https://doi.org/10.1038/nrmicro1930.

    Article  CAS  Google Scholar 

  35. Edeas M, Saleh J, Peyssonnaux C. Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020; https://doi.org/10.1016/j.ijid.2020.05.110.

  36. Desai MR, Holtz TH, Helfand R, Terlouw DJ, Wannemuehler KA, Kariuki SK, et al. Relationship of measles vaccination with anaemia and malaria in western Kenya. Tropical Med Int Health. 2005;10(11):1099–107. https://doi.org/10.1111/j.1365-3156.2005.01494.x.

    Article  Google Scholar 

  37. Liu W, Zhang S, Nekhai S, Liu S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Curr Clin Microbiol Rep. 2020:1–7. https://doi.org/10.1007/s40588-020-00140-w.

  38. Schmidt SM. The role of iron in viral infections. Front Biosci (Landmark Ed). 2020;25:893–911.

    Article  CAS  Google Scholar 

  39. Foka P, Dimitriadis A, Karamichali E, Kyratzopoulou E, Giannimaras D, Koskinas J, et al. Alterations in the iron homeostasis network: a driving force for macrophage-mediated hepatitis C virus persistency. Virulence. 2016;7(6):679–90. https://doi.org/10.1080/21505594.2016.1175700.

    Article  CAS  Google Scholar 

  40. Fillebeen C, Pantopoulos K. Iron inhibits replication of infectious hepatitis C virus in permissive Huh7.5.1 cells. J Hepatol. 2010;53(6):995–9. https://doi.org/10.1016/j.jhep.2010.04.044.

    Article  CAS  Google Scholar 

  41. Fujita N, Sugimoto R, Urawa N, Araki J, Mifuji R, Yamamoto M, et al. Hepatic iron accumulation is associated with disease progression and resistance to interferon/ribavirin combination therapy in chronic hepatitis C. J Gastroenterol Hepatol. 2007;22(11):1886–93. https://doi.org/10.1111/j.1440-1746.2006.04759.x.

    Article  CAS  Google Scholar 

  42. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 2007;446(7131):92–6. https://doi.org/10.1038/nature05539.

    Article  CAS  Google Scholar 

  43. Luo Y, Qiu J. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol. 2015;10(2):155–67. https://doi.org/10.2217/fvl.14.103.

    Article  CAS  Google Scholar 

  44. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

    Article  CAS  Google Scholar 

  45. Shah A, Frost JN, Aaron L, Donovan K, Drakesmith H, Collaborators. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Crit Care. 2020;24(1):320. https://doi.org/10.1186/s13054-020-03051-w.

    Article  Google Scholar 

  46. Sonnweber T, Boehm A, Sahanic S, Pizzini A, Aichner M, Sonnweber B, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. https://doi.org/10.1186/s12931-020-01546-2.

    Article  CAS  Google Scholar 

  47. Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? Cell Death Discov. 2020;6(1):130. https://doi.org/10.1038/s41420-020-00369-w.

    Article  CAS  Google Scholar 

  48. Telser J, Volani C, Hilbe R, Seifert M, Brigo N, Paglia G, et al. Metabolic reprogramming of salmonella infected macrophages and its modulation by iron availability and the mTOR pathway. Microb Cell. 2019;6(12):531–43. https://doi.org/10.15698/mic2019.12.700.

    Article  CAS  Google Scholar 

  49. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84. https://doi.org/10.1038/ng.2996.

    Article  CAS  Google Scholar 

  50. Zhang AS, Anderson SA, Meyers KR, Hernandez C, Eisenstein RS, Enns CA. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem. 2007;282(17):12547–56. https://doi.org/10.1074/jbc.M608788200.

    Article  CAS  Google Scholar 

  51. Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, et al. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun. 2017;8(1):403. https://doi.org/10.1038/s41467-017-00500-z.

    Article  CAS  Google Scholar 

  52. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23. https://doi.org/10.1056/NEJMra041809.

    Article  CAS  Google Scholar 

  53. Chen AY, Guan W, Lou S, Liu Z, Kleiboeker S, Qiu J. Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells. J Virol. 2010;84(23):12385–96. https://doi.org/10.1128/JVI.01229-10.

    Article  CAS  Google Scholar 

  54. Nishina S, Hino K, Korenaga M, Vecchi C, Pietrangelo A, Mizukami Y, et al. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology. 2008;134(1):226–38. https://doi.org/10.1053/j.gastro.2007.10.011.

    Article  CAS  Google Scholar 

  55. Vahdati-Ben Arieh S, Laham N, Schechter C, Yewdell JW, Coligan JE, Ehrlich R. A single viral protein HCMV US2 affects antigen presentation and intracellular iron homeostasis by degradation of classical HLA class I and HFE molecules. Blood. 2003;101(7):2858–64. https://doi.org/10.1182/blood-2002-07-2158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Maria Mitterstiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitterstiller, AM., von Raffay, L., Nairz, M. (2022). Iron Deficiency, Anemia, and the Immune System. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics