Skip to main content

Materials Characterization by Laser-Induced Plasma Acoustics and Spectroscopy

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences

Abstract

Plasma formation by focused high-power, short laser pulses on matter at atmospheric pressure is always accompanied by a characteristic snapping sound. The fraction of incoming energy absorbed by the material contributes to processes like heating and melting that lead to the formation of inertially-confined, high-pressure plasma and vapors. Vibrations propagating into the sample generated by the pressure and inherent recoil reaction of induced stress waves (e.g., shock waves) together with the supersonic expansion of the front edge of the plasma into the ambient gas allow the back-and-forth vibration of close atmospheric particles resulting in sound. Precedents on laser-generated acoustic transients are not numerous in literature specially when compared to other laser-produced phenomena. However, its promising uses make it an interesting area to explore. This chapter reviews the combined use of optical emission and the sound waves generated by laser-induced plasma formation to support the identification of the sample. The first section of the chapter deals with the fundamentals of laser-induced acoustic signals. The next section is devoted to the discussion of how the experimental variables affect acoustics as a source of sample information. A discussion on the synergy of combined optical and acoustic spectroscopies through data fusion strategies toward analytical specificity follows. Finally, the conclusions outline the most relevant achievements so far and future needs focusing mainly on the use of laser-induced acoustics for the in-situ laser-based geochemistry exploration of solar system planets, one of its most interesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young M, Hercher M, Wu C. Some characteristics of laser‐induced air sparks. J. Appl. Phys. 1966;37:4938.

    Article  CAS  Google Scholar 

  2. Ujihara K, Kamiyama M. Laser-induced sonic waves in air. Proc. IEEE. 1969;57:1664.

    Article  Google Scholar 

  3. Chen G, Yeung ES. Acoustic signal as an internal standard for quantitation in laser-generated plumes. Anal. Chem. 1988;60:2258.

    Article  CAS  Google Scholar 

  4. Mesaros M, Martínez OE, Bilmes GM, Tocho JO. Acoustic detection of laser induced melting of metals. J. Appl. Phys. 1997;81:1014.

    Article  CAS  Google Scholar 

  5. Stauter C, Gérard P, Fontaine J, Engel T. Laser ablation acoustical monitoring. Appl. Surf. Sci. 1997;109–110:174.

    Article  Google Scholar 

  6. Laserna J, Palanco S. Spectral analysis of the acoustic emission of laser-produced plasmas. Laser induced plasma spectroscopy and applications. 2002;42:ThE21.

    Article  Google Scholar 

  7. Conesa S, Palanco S, Laserna J. Acoustic and optical emission during laser-induced plasma formation. Spectrochim. Acta B. 2004;59:1395.

    Article  Google Scholar 

  8. Chen X, Bian BM, Shen ZH, Lu J, Ni X. Equations of laser-induced plasma shock wave motion in air. Microw. Opt. Technol. Lett. 2003;38:75.

    Article  Google Scholar 

  9. Hrdlička A, et al. Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles. Spectrochim. Acta B. 2009;64:74.

    Article  Google Scholar 

  10. Gandolfi M, Banfi F, Glorieux C. Optical wavelength dependence of photoacoustic signal of gold nanofluid. Photoacoustics. 2020;20:100199.

    Article  Google Scholar 

  11. Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacrétaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Lasers Surg. Med. 1996;18:278.

    Article  CAS  Google Scholar 

  12. Manikanta E, Vinoth Kumar L, Venkateshwarlu P, Leela C, Kiran PP. Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air. Appl. Opt. 2016;55:548.

    Article  CAS  Google Scholar 

  13. Chide B, et al. Listening to laser sparks: a link between laser-induced breakdown spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta B. 2018;153:50.

    Article  Google Scholar 

  14. Bosáková M, Purohit P, Alvarez-Llamas C, Moros J, Novotný K, Laserna J. A systematic evaluation on the impact of sample-related and environmental factors in the analytical performance of acoustic emission from laser-induced plasmas. Anal. Chim. Acta. 2022;1225:340224.

    Article  Google Scholar 

  15. Attenborough K. Review of ground effects on outdoor sound propagation from continuous broadband sources. Appl. Acoust. 1988;24:289.

    Article  Google Scholar 

  16. Alvarez-Llamas C, Purohit P, Moros J, Laserna J. Differentiation of closely related mineral phases in a Mars atmosphere using frequency domain laser-induced plasma acoustics. Anal. Chim. Acta. 2022;1226:340261.

    Google Scholar 

  17. Murdoch N, et al. Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planet. Space Sci. 2019;165:260.

    Article  CAS  Google Scholar 

  18. Hosoya N, Nagata M, Kajiwara I. Acoustic testing in a very small space based on a point sound source generated by laser-induced breakdown: Stabilization of plasma formation. J. Sound Vib. 2013;332:4572.

    Article  Google Scholar 

  19. Alvarez-Llamas C, Purohit P, Moros J, Laserna J. LIBS-acoustic mid-level fusion scheme for mineral differentiation under terrestrial and martian atmospheric conditions. Anal. Chem. 2022;94:1840.

    Article  CAS  Google Scholar 

  20. Chide B, et al. Acoustic monitoring of laser-induced phase transitions in minerals: implication for Mars exploration with SuperCam. Sci. Rep. 2021;11:24019.

    Article  CAS  Google Scholar 

  21. Beranek LL, Sleeper HP. The design and construction of anechoic sound chambers. J. Acoust. Soc. Am. 1946;18:140.

    Article  Google Scholar 

  22. Chung BK, Tunku U, Rahman A, Lumpur K. Handbook of antenna technologies. Handb. Antenna Technol. 2020:1.

    Google Scholar 

  23. Bolt RH. Note on normal frequency statistics for rectangular rooms. J. Acoust. Soc. Am. 1946;18:130.

    Article  Google Scholar 

  24. Błaszak MA. Acoustic design of small rectangular rooms: normal frequency statistics. Appl. Acoust. 2008;69:1356.

    Article  Google Scholar 

  25. Anabitarte F, Rodríguez-Cobo L, López-Higuera J-M, Cobo A. Normalization of laser-induced breakdown spectroscopy spectra using a plastic optical fiber light collector and acoustic sensor device. Appl. Opt. 2012;51:8306.

    Article  Google Scholar 

  26. Hartmann W. Acoustic signal processing. In: Springer handbook of acoustics. New York, NY: Springer New York; 2007. p. 503.

    Chapter  Google Scholar 

  27. Havelock D, Kuwano S, Vorländer M. Handbook of signal processing in acoustics. Berlin: Springer; 2008.

    Book  Google Scholar 

  28. Castle BC, Talabardon K, Smith BW, Winefordner JD. Variables influencing the precision of laser-induced breakdown spectroscopy measurements. Appl. Spectrosc. 1998;52:649.

    Article  CAS  Google Scholar 

  29. Zorov NB, Gorbatenko AA, Labutin TA, Popov AM. A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction. Spectrochim. Acta B. 2010;65:642.

    Article  Google Scholar 

  30. Pang HM, Yeung ES. Laser-enhanced ionization as a diagnostic tool in laser-generated plumes. Anal. Chem. 1989;61:2546.

    Article  CAS  Google Scholar 

  31. Lu P, et al. Determination of calorific value in coal by LIBS coupled with acoustic normalization. Appl. Phys. B Lasers Opt. 2021;127:1.

    Article  Google Scholar 

  32. Huang F, et al. Normalization of underwater laser-induced breakdown spectroscopy using acoustic signals measured by a hydrophone. Appl. Opt. 2021;60:1595.

    Article  Google Scholar 

  33. Kacaras A, Bächle M, Schwabe M, Zanger F, León FP, Schulze V. Acoustic emission-based characterization of focal position during ultra-short pulse laser ablation. Procedia CIRP. 2019;81:270.

    Article  Google Scholar 

  34. Schulze V, Weber P, Ruhs C. Increase of process reliability in the micro-machining processes EDM-milling and laser ablation using on-machine sensors. J. Mater. Process. Technol. 2012;212:625.

    Article  CAS  Google Scholar 

  35. Craig SM, Brownell K, O’Leary B, Malfitano C, Kelley JA. The effect of standing acoustic waves on the formation of laser-induced air plasmas. Appl. Spectrosc. 2013;67:329.

    Article  CAS  Google Scholar 

  36. Gómez Bolaños J, Delikaris-Manias S, Pulkki V, Eskelinen J, Hæggström E. Laser-induced acoustic point source for accurate impulse response measurements within the audible bandwidth. J. Acoust. Soc. Am. 2014;135:EL298.

    Article  Google Scholar 

  37. Dyer PE, Farrar SR, Key PH. Fast time-response photoacoustic studies and modelling of KrF laser ablated YBa2Cu3O7. Appl. Surf. Sci. 1992;54:255.

    Article  CAS  Google Scholar 

  38. Lee KC, Chan CS, Cheung NH. Pulsed laser-induced damage threshold of thin aluminum films on quartz: experimental and theoretical studies. J. Appl. Phys. 1996;79:3900.

    Article  CAS  Google Scholar 

  39. Gusev V, Kolomenskii AA, Hess P. Effect of melting on the excitation of surface acoustic wave pulses by UV nanosecond laser pulses in silicon. Appl. Phys. A Mater. Sci. Process. 1995;61:285.

    Article  Google Scholar 

  40. Gusev V, Desmet C, Lauriks W, Glorieux C, Thoen J. Theory of Scholte, leaky Rayleigh, and lateral wave excitation via the laser‐induced thermoelastic effect. J. Acoust. Soc. Am. 1996;100:1514.

    Article  Google Scholar 

  41. Liu G, Toncich DJ, Harvey EC. Evaluation of excimer laser ablation of thin Cr film on glass substrate by analysing acoustic emission. Opt. Lasers Eng. 2004;42:639.

    Article  Google Scholar 

  42. Lu YF, Lee YP, Hong MH, Low TS. Acoustic wave monitoring of cleaning and ablation during excimer laser interaction with copper surfaces. Appl. Surf. Sci. 1997;119:137.

    Article  CAS  Google Scholar 

  43. Jankowska M, Śliwiński G. Acoustic monitoring for the laser cleaning of sandstone. J. Cult. Herit. 2003;4:65.

    Article  Google Scholar 

  44. Villarreal-Villela AE, Cabrera LP. Monitoring the laser ablation process of paint layers by PILA technique. Open J. Appl. Sci. 2016;06:626.

    Article  CAS  Google Scholar 

  45. Chen Y, Deng G, Zhou Q, Feng G. Acoustic signal monitoring in laser paint cleaning. Laser Phys. 2020;30:066001.

    Article  CAS  Google Scholar 

  46. Papanikolaou A, Tserevelakis GJ, Melessanaki K, Fotakis C, Zacharakis G, Pouli P. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto-Electronic Adv. 2020;3:19003701.

    Article  Google Scholar 

  47. Tserevelakis GJ, Pouli P, Zacharakis G. Listening to laser light interactions with objects of art: a novel photoacoustic approach for diagnosis and monitoring of laser cleaning interventions. Herit. Sci. 2020;8:98.

    Article  Google Scholar 

  48. Schneider D. Laser-induced surface acoustic waves for material testing. In: Handbook of advanced non-destructive evaluation. Cham: Springer; 2018. p. 1.

    Google Scholar 

  49. Schneider D, Schwarz T, Scheibe H-J, Panzner M. Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films. 1997;295:107.

    Article  CAS  Google Scholar 

  50. Schneider D, Hofmann R, Schwarz T, Grosser T, Hensel E. Evaluating surface hardened steels by laser-acoustics. Surf. Coatings Technol. 2012;206:2079.

    Article  CAS  Google Scholar 

  51. Schneider D, Brenner B, Schwarz T. Characterization of laser hardened steels by laser induced ultrasonic surface waves. J. Nondestruct. Eval. 1995;14:21.

    Article  Google Scholar 

  52. Ma XQ, Mizutani Y, Takemoto M. Laser-induced surface acoustic waves for evaluation of elastic stiffness of plasma sprayed materials. J. Mater. Sci. 2001;36:5633.

    Article  CAS  Google Scholar 

  53. Bescond C, Kruger SE, Lévesque D, Lima RS, Marple BR. In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed wc-co coatings by laser-ultrasonics. J. Therm. Spray Technol. 2007;16:238.

    Article  CAS  Google Scholar 

  54. F. Vaz, S. Carvalho, L. Rebouta, M. . Silva, A. Paúl, and D. Schneider, “Young’s modulus of (Ti,Si)N films by surface acoustic waves and indentation techniques,” Thin Solid Films, vol. 408, 1–2, pp. 160, 2002.

    Google Scholar 

  55. Yang F, et al. An integrated laser-induced piezoelectric/differential confocal surface acoustic wave system for measurement of thin film young’s modulus. Sensors. 2012;12:12208.

    Article  CAS  Google Scholar 

  56. Podymova NB, Karabutov AA, Cherepetskaya EB. Laser optoacoustic method for quantitative non-destructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Phys. 2014;24:086003.

    Article  CAS  Google Scholar 

  57. Cai Y, Cheung NH. Photoacoustic monitoring of the mass removed in pulsed laser ablation. Microchem. J. 2011;97:109.

    Article  CAS  Google Scholar 

  58. Kradolfer S, Heutschi K, Koch J, Günther D. Listening with curiosity–tracking the acoustic response of portable laser ablation. Chimia (Aarau). 2021;75:300.

    Article  CAS  Google Scholar 

  59. Kradolfer S, Heutschi K, Koch J, Günther D. Tracking mass removal of portable laser ablation sampling by its acoustic response. Spectrochim. Acta B. 2021;179:106118.

    Article  CAS  Google Scholar 

  60. van den Heuvel JC, Klein V, Lutzmann P, van Putten FJM, Hebel M, Schleijpen HMA. Sound wave and laser excitation for acousto-optical landmine detection. Detect. Remediat. Technol. Mines Minelike Targets VIII. 2003;5089:569.

    Article  Google Scholar 

  61. Moros J, Gaona I, Laserna J. Remotely exploring deeper-into-matter by non-contact detection of audible transients excited by laser radiation. Sensors. 2017;17:2960.

    Article  Google Scholar 

  62. Cleary SF. Laser pulses and the generation of acoustic transients in biological material. In: Laser applications in medicine and biology. Boston, MA: Springer, US; 1977. p. 175

    Chapter  Google Scholar 

  63. Esenaliev RO, Oraevsky AA, Letokhov VS, Karabutov AA, Malinsky TV. Studies of acoustical and shock waves in the pulsed laser ablation of biotissue. Lasers Surg. Med. 1993;13:470.

    Article  CAS  Google Scholar 

  64. Li C, Guan G, Zhang F, Nabi G, Wang RK, Huang Z. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application. Biomed. Opt. Express. 2014;5:1403.

    Article  Google Scholar 

  65. Li C, et al. Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves. Biomed. Opt. Express. 2014;5:4313.

    Article  Google Scholar 

  66. Ghasemi F, Parvin P, Hosseini Motlagh NS, Amjadi A, Abachi S. Laser induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues. Appl. Opt. 2016;55:8227.

    Article  CAS  Google Scholar 

  67. Maurice S, et al. In situ recording of Mars soundscape. Nature. 2022;605:653.

    Google Scholar 

  68. Maurice S, et al. Acoustic recording of LIBS analyses in preparation for Mars 2020. In: 48th Lunar and Planetary Science Conference; 2017. p. 2647.

    Google Scholar 

  69. Chide B, et al. Recording laser-induced sparks on Mars with the SuperCam microphone. Spectrochim. Acta B. 2020;174.

    Google Scholar 

Download references

Acknowledgments

This work was funded by projects UMA18-FEDERJA-272 from the Junta de Andalucía, Spain and PID2020-119185GB-I00 from Ministerio de Ciencia e Innovación, Spain. P.P. is grateful to the European Union’s NextGenerationEU plan and the Spanish Ministerio de Universidades for his Margarita Salas fellowship under the program “Ayudas para la recualificación del Sistema Universitario español.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Javier Laserna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purohit, P., Alvarez-Llamas, C., Moros, J., Laserna, J.J. (2022). Materials Characterization by Laser-Induced Plasma Acoustics and Spectroscopy. In: Galbács, G. (eds) Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-14502-5_11

Download citation

Publish with us

Policies and ethics