Skip to main content
Log in

Effect of melting on the excitation of surface acoustic wave pulses by UV nanosecond laser pulses in silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of melting on the excitation of Surface Acoustic Wave (SAW) pulses in silicon is studied both theoretically and experimentally. The developed theory of Rayleigh-type SAW laser-induced thermoelastic excitation in a structure composed of a liquid layer on a solid substrate predicts that the SAW is predominantly generated in the solid phase due to the absence of shear rigidity in a liquid. The characteristic changes in the SAW pulse shape as well as the saturation and even the decrease of the SAW pulse amplitude observed above the melting threshold are explained theoretically to be a result of the decrease of the heat flux into the solid phase as well as due to the decrease of the volume of the solid phase caused by melting. Although the heat flux into the solid phase is decreased both as a consequence of the reflectivity increase and the additional energy losses (latent heat of melting) at the phase transition, it is demonstrated that the influence of reflectivity changes on the SAW pulse is negligible in comparison with the effect of melt-front motion. For laser pulses of 7 ns duration at 355 nm, the threshold value of laser fluence for meltingF m=0.23±0.04 J/cm2 and for the ablationF a=1.3±0.2 J/cm2 were determined experimentally as the points of characteristic changes in the observed SAW pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kolomenskii, M. Szabadi, P. Hess: Appl. Surf. Sci.86, 591 (1992)

    Google Scholar 

  2. S.M. Avanesyan, V.E. Gusev, B.V. Zhdanov, V.I. Kuznetsov, S.A. Telenkov: Sov. Phys.-Acoust.32, 356 (1986)

    Google Scholar 

  3. S. Avanesyan, V. Gusev, N. Zheludev: Appl. Phys. A40, 163 (1986)

    Google Scholar 

  4. V.E. Gusev, A.A. Karabutov:Laser Optoacoustics (American Institute of Physics, New York 1993)

    Google Scholar 

  5. A.A. Kolomenskii, P. Hess: In IEEE Ultrasonics Symp. Proc. ed. by M. Levy, S.C. Schneider, B.R. McAvoy (Institute of Electrical and Electronic Engineers, New York 1994) p. 651

    Google Scholar 

  6. G.E. Jellison, Jr., D.H. Lowndes, D.N. Mashburn, R.F. Wood: Phys. Rev. B34, 2407 (1986)

    Google Scholar 

  7. M.O. Thompson, J.W. Mayer, A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, D.C. Jacobson: Phys. Rev. Lett.50, 896 (1983)

    Google Scholar 

  8. N. Baltzer, M. von Allmen, M.W. Sigrist: Appl. Phys. Lett.43, 826 (1983)

    Google Scholar 

  9. D.L. Singleton, G. Paraskevopoulos, A.D. Buckthought, R.S. Irvin, G.S. Jolly, I.T. Ali Emesh: SPIE Proc.1186, 48 (1989)

    Google Scholar 

  10. G. Gorodetsky, J. Kanicki, T. Kazyaka, R.L. Melcher: Appl. Phys. Lett.46, 547 (1985)

    Google Scholar 

  11. I.A. Veselovskii, B.M. Zhiryakov, A.I. Korotchenko, A.A. Samokhin: Sov. J. Quantum Electron.15, 250 (1985)

    Google Scholar 

  12. Landolt-Börnstein:Numerical Data and Functional Relationships in Science and Technology Subvol. c, New Series, Group III, Vol. 17, (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  13. J.M. Poate, J.W. Mayer (eds.):Laser Annealing of Semiconductors (Academic, New York 1982)

    Google Scholar 

  14. H. Coufal, K. Meyer, R.K. Grygier, P. Hess, A. Neubrand: J. Acoust. Soc. Am.95, 1158 (1994)

    Google Scholar 

  15. H. Coufal, R. Grygier, P. Hess, A. Neubrand: J. Acoust. Soc. Am.92, 2980 (1992)

    Google Scholar 

  16. V. Gusev, P. Hess: Appl. Phys. A 61, 299 (1995)

    Google Scholar 

  17. V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva:Liquid Semiconductors (Plenum, New York 1969)

    Google Scholar 

  18. H. Kodera: Jpn. J. Appl. Phys.2, 212 (1963)

    Google Scholar 

  19. A.A. Kolomenskii, A.A. Maznev: Sov. Phys.-Acoust.36, 463 (1990)

    Google Scholar 

  20. C.V. Shank, R. Yen, C. Hirlimann: Phys. Rev. Lett.50, 454 (1983)

    Google Scholar 

  21. J.S. Preston, H.M. van Dniel: Phys. Rev. B30, 1950 (1984)

    Google Scholar 

  22. V. Gusev, B. Zhdanov, V. Kuznetsov, E. Petrosyan, S. Telenkov: Sov. Phys.-Semicond.2, 226 (1989)

    Google Scholar 

  23. A.A. Samokhin: Kratk. Soobshch. Fiz. (Lebedev Physical Institute Short Communications)8, 40 (1986)

    Google Scholar 

  24. M.C. Downer, R.L. Fork, C.V. Shank: J. Opt. Soc. Am.2, 595 (1985)

    Google Scholar 

  25. S. De Unamuno, E. Fogarassy: Appl. Surf. Sci.36, 1 (1989)

    Google Scholar 

  26. L.D. Landau, E.M. Lifshitz:Fluid Mechanics (Pergamon, New York 1959)

    Google Scholar 

  27. H.S. Carslaw, J.C. Jaeger:Conduction of Heat in Solids, 2nd edn. (Oxford Univ. Press, Oxford 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, V., Kolomenskii, A.A. & Hess, P. Effect of melting on the excitation of surface acoustic wave pulses by UV nanosecond laser pulses in silicon. Appl. Phys. A 61, 285–298 (1995). https://doi.org/10.1007/BF01538194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538194

PACS

Navigation