Skip to main content

Patient-Ventilator Dyssynchrony

  • Chapter
  • First Online:
Personalized Mechanical Ventilation
  • 864 Accesses

Abstract

Patient-ventilator dyssynchrony is a mismatch between the patient’s respiratory efforts and mechanical ventilator delivery. Dyssynchrony can occur at any phase throughout the respiratory cycle. There are different types of dyssynchrony with different mechanisms and different potential management: trigger dyssynchrony (infective efforts, auto-triggering, and double triggering); flow dyssynchrony, which happens during the inspiratory phase; and cycling dyssynchrony (premature cycling and delayed cycling). Dyssynchrony has been associated with patient outcomes. Thus, it is important to recognize and address these dyssynchronies at the bedside. Patient-ventilator dyssynchrony can be detected by carefully scrutinizing the airway pressure-time and flow-time waveforms displaying on the ventilator screens along with assessing the patient’s comfort. Clinicians need to know how to depict these dyssynchronies at the bedside. This review aims to define the different types of dyssynchrony and then discuss the evidence for their relationship with patient outcomes and address their potential management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EAdi:

Electrical activity of the diaphragm

NAVA:

Neurally adjusted ventilatory assist

PAV:

Proportional assist ventilation

PEEPi:

Intrinsic positive end-expiratory pressure

Pes:

Esophageal pressure

TI:

Inspiratory time

References

  1. Mehta AB, Syeda SN, Wiener RS, et al. Epidemiological trends in invasive mechanical ventilation in the United States: a population-based study. J Crit Care. 2015;30:1217–21.

    Article  Google Scholar 

  2. MacIntyre NR. Principles of mechanical ventilation. In: Murray J, Nadel J, Mason R, Boushey H, editors. Textbook of respiratory medicine. 3rd ed. Philadelphia, PA: WB Saunders; 2004.

    Google Scholar 

  3. Mora Carpio AL, Mora JI. Ventilator management. [Updated 2020 May 17]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK448186/

  4. Kalabalik J, Brunetti L, El-Srougy R. Intensive care unit delirium: a review of the literature. J Pharm Pract. 2014;27(2):195–207. https://doi.org/10.1177/0897190013513804. Epub 2013 Dec 10. PMID: 24326408

    Article  Google Scholar 

  5. Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19:274. https://doi.org/10.1186/s13054-015-0993-7.

    Article  Google Scholar 

  6. Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375:475–80.

    Article  Google Scholar 

  7. Mauri T, Yoshida T, Bellani G, et al. PLeUral pressure working Group (PLUG—acute respiratory failure section of the European Society of intensive care Dyssynchrony Consequences and Management 337 medicine). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.

    Article  Google Scholar 

  8. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.

    Article  Google Scholar 

  9. Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112:1592–9.

    Article  CAS  Google Scholar 

  10. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.

    Article  Google Scholar 

  11. de Wit M, Pedram S, Best AM, et al. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009;24:74–80.

    Article  Google Scholar 

  12. Colombo D, Cammarota G, Alemani M, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.

    Article  Google Scholar 

  13. Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.

    Article  Google Scholar 

  14. Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.

    Article  Google Scholar 

  15. Chanques G, Kress JP, Pohlman A, et al. Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med. 2013;41:2177–87.

    Article  Google Scholar 

  16. Gilstrap D, MacIntyre N. Patient-ventilator interactions. Implications for clinical management. Am J Respir Crit Care Med. 2013;188:1058–68.

    Article  Google Scholar 

  17. Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony consequences and management. Crit Care Clin. 2018 Jul;34(3):325–41.

    Article  Google Scholar 

  18. Antonogiannaki EM, Georgopoulos D, Akoumianaki E. Patient-ventilator dyssynchrony. Korean J Crit Care Med. 2017;32(4):307–22.

    Article  Google Scholar 

  19. de Wit M. Monitoring of patient-ventilator interaction at the bedside. Respir Care. 2011 Jan;56(1):61–72.

    Article  Google Scholar 

  20. Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 1997;155:1940–8.

    Article  CAS  Google Scholar 

  21. Younes M, Kun J, Webster K, Roberts D. Response of ventilator-dependent patients to delayed opening of exhalation valve. Am J Respir Crit Care Med. 2002;166:21–30.

    Article  Google Scholar 

  22. MacIntyre NR, Cheng KC, McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997;111(1):188–93.

    Article  CAS  Google Scholar 

  23. Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.

    Article  CAS  Google Scholar 

  24. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.

    Article  CAS  Google Scholar 

  25. Fabry B, Guttmann J, Eberhard L, Bauer T, HaberthĂ¼r C, Wolff G. An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support. Chest. 1995;107:1387–94.

    Article  CAS  Google Scholar 

  26. Imanaka H, Nishimura M, Takeuchi M, Kimball WR, Yahagi N, Kumon K. Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med. 2000;28:402–7.

    Article  CAS  Google Scholar 

  27. Hill LL, Pearl RG. Flow triggering, pressure triggering, and autotriggering during mechanical ventilation. Crit Care Med. 2000;28:579–81.

    Article  CAS  Google Scholar 

  28. Marini JJ, Capps JS, Culver BH. The inspiratory work of breathing during assisted mechanical ventilation. Chest. 1985;87:612–8.

    Article  CAS  Google Scholar 

  29. Marini JJ, Rodriguez RM, Lamb V. The inspiratory workload of patient initiated mechanical ventilation. Am Rev Respir Dis. 1986;134:902–9.

    Article  CAS  Google Scholar 

  30. Yang LY, Huang YC, Macintyre NR. Patient–ventilator synchrony during pressure-targeted versus flow-targeted small tidal volume assisted ventilation. J Crit Care. 2007;22:252–7.

    Article  Google Scholar 

  31. Kallet RH, Campbell AR, Alonso JA, Morabito DJ, Mackersie RC. The effects of pressure control versus volume control assisted ventilation on patient work of breathing in acute lung injury and acute respiratory distress syndrome. Respir Care. 2000;45:1085–96.

    CAS  Google Scholar 

  32. Kondili E, Xirouchaki N, Georgopoulos D. Modulation and treatment of patient-ventilator dyssynchrony. Curr Opin Crit Care. 2007;13:84–9.

    Article  Google Scholar 

  33. Gentile MA. Cycling of the mechanical ventilator breath. Respir Care. 2011;56:52–60.

    Article  Google Scholar 

  34. Pierson DJ. Patient–ventilator interaction. Respir Care. 2011;56:214–28.

    Article  Google Scholar 

  35. Gea J, Zhu E, GĂ¡ldiz JB, et al. Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol. 2009;45:68–74.

    Article  Google Scholar 

  36. Pohlman MC, McCallister KE, Schweickert WD, et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med. 2008;36:3019–23.

    Article  Google Scholar 

  37. Tokioka H, Tanaka T, Ishizu T, et al. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001;92:161–5.

    Article  CAS  Google Scholar 

  38. Fernandez R, Mendez M, Younes M. Effect of ventilator flow rate on respiratory timing in normal humans. Am J Respir Crit Care Med. 1999;159:710–9.

    Article  CAS  Google Scholar 

  39. Chiumello D, Polli F, Tallarini F, et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:2547–52.

    Article  Google Scholar 

  40. Kondili E, Prinianakis G, Georgopoulos D. Patient-ventilator interaction. Br J Anaesth. 2003;91:106–19.

    Article  CAS  Google Scholar 

  41. Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N, Giraud R, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143:927–38.

    Article  Google Scholar 

  42. Graves C, Glass L, Laporta D, et al. Respiratory phase locking during mechanical ventilation in anesthetized human subjects. Am J Phys. 1986;250:R902–9.

    CAS  Google Scholar 

  43. Simon PM, Habel AM, Daubenspeck JA, et al. Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J Appl Physiol. 1985;2000(89):760–9.

    Google Scholar 

  44. Muzzin S, Baconnier P, Benchetrit G. Entrainment of respiratory rhythm by periodic lung inflation: effect of airflow rate and duration. Am J Phys. 1992;263:R292–300.

    CAS  Google Scholar 

  45. Delisle S, Charbonney E, Albert M, et al. Patient-ventilator asynchrony due to reverse triggering occurring in brain-dead patients: clinical implications and physiological meaning. Am J Respir Crit Care Med. 2016;194:1166–8.

    Article  Google Scholar 

  46. Epstein SK. How often does patient–ventilator asynchrony occur and what are the consequences? Respir Care. 2011;56:25–38.

    Article  Google Scholar 

  47. de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–5.

    Google Scholar 

  48. Kahn JM, Andersson L, Karir V, Polissar NL, Neff MJ, Rubenfeld GD. Low tidal volume ventilation does not increase sedation use in patients with acute lung injury. Crit Care Med. 2005;33:766–71.

    Article  Google Scholar 

  49. Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.

    Article  Google Scholar 

  50. Yoshida T, Fujino Y, Amato MBP, et al. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195:985–92.

    Article  Google Scholar 

  51. Nava S, Bruschi C, Rubini F, et al. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.

    Article  CAS  Google Scholar 

  52. Imsand C, Feihl F, Perret C, Fitting JW. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology. 1994;80:13–22.

    Article  CAS  Google Scholar 

  53. Jubran A, Van de Graaff WB, Tobin MJ. Variability of patient– ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;152:129–36.

    Article  CAS  Google Scholar 

  54. Tassaux D, Gainnier M, Battisti A, et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172:1283–9.

    Article  Google Scholar 

  55. Sassoon CS. Triggering of the ventilator in patient–ventilator interactions. Respir Care. 2011;56:39–51.

    Article  Google Scholar 

  56. MacIntyre NR. Patient–ventilator interactions: optimizing conventional ventilation modes. Respir Care. 2011;56(73–84):discussion 81–84.

    Google Scholar 

  57. MacIntyre NR, Ho LI. Effects of initial flow rate and breath termination criteria on pressure support ventilation. Chest. 1991;99:134–8.

    Article  CAS  Google Scholar 

  58. Chiumello D, Pelosi P, Croci M, Bigatello LM, Gattinoni L. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–14.

    Article  CAS  Google Scholar 

  59. Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist—better approaches to patient ventilator synchrony? Clin Chest Med. 2008;29:329–42, vii

    Article  Google Scholar 

  60. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, Slutsky AS, Della Corte F, Navalesi P. Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med. 2011;39:2452–7.

    Article  Google Scholar 

  61. Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C. Patient–ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.

    Article  Google Scholar 

  62. Spahija J, de Marchie M, Albert M, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.

    Article  Google Scholar 

  63. Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.

    Article  Google Scholar 

  64. Mauri T, Bellani G, Grasselli G, et al. Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med. 2013;39:282–91.

    Article  Google Scholar 

  65. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory Am Rev Respir Dis. 1992 Jan;145(1):114–20.

    Article  CAS  Google Scholar 

  66. Alexopoulou C, Kondili E, Plataki M, et al. Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med. 2013;39:1040–7.

    Article  CAS  Google Scholar 

  67. Xirouchaki N, Kondili E, Vaporidi K, et al. Proportional assist ventilation with load adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med. 2008;34:2026–34.

    Article  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no competing interests related to the subject of the study.

Funding

None.

Author’s Contributions

JM and BDO participated in and wrote the manuscript.

All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Oliveira, B., Mallat, J. (2022). Patient-Ventilator Dyssynchrony. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics