Skip to main content

Role of Point-of-Care Ultrasound in the Management of Mechanical Ventilation

  • Chapter
  • First Online:
Personalized Mechanical Ventilation

Abstract

Ultrasound (US) became an essential tool in the hands of the intensivist and is now recommended both for procedural guidance and diagnostic purposes. Point-of-care ultrasound (POCUS) is an immediately available and repeatable, non-irradiating bedside tool integrating the clinical examination.

Recent years were characterized by a growing interest in the fields of lung ultrasound (LUS) and diaphragm ultrasound (DUS). The combination of these two ultrasound techniques with critical care echocardiography (CCE) may integrate the classical approach to mechanically ventilated patients, both for monitoring and diagnostic purposes, finally contributing to the titration of mechanical ventilation and to the management of respiratory disease.

Lung, diaphragm, and cardiac US provide significant information to improve the management of the critical patient under mechanical ventilation, from the initial assessment, through the ventilation setting (like PEEP) and its complication diagnosis (like pneumothorax, atelectasis), until the weaning process.

LUS is of particular help in COVID-19 patients. It is potentially able to distinguish between the two phenotypes (type H and type L) of COVID-19, based on the different signs and patterns and also the assessment of prone positioning effects and lung recruitment maneuvers in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouhemad B, Mongodi S, Via G, et al. Ultrasound for “lung monitoring” of ventilated patients. Anesthesiology. 2015;122:437–47.

    Article  Google Scholar 

  2. Riviello E, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016;193(1):1546–56.

    Article  Google Scholar 

  3. Luecke T, Corradi F, Pelosi P. Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):131–40.

    Article  Google Scholar 

  4. Bouhemad B, Zhang M, Lu Q, Rouby JJ. Bedside lung ultrasound in critical care practice. J Crit Care. 2007;11:205–13.

    Article  Google Scholar 

  5. Umbrello M, Formenti P, Longhi D, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19:161.

    Article  Google Scholar 

  6. Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.

    Article  Google Scholar 

  7. Matamis D, Soilemezi E, Tsagourias M, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39:801–10.

    Article  Google Scholar 

  8. Pasero D, Koeltz A, Placido R, et al. Improving ultrasonic measurement of diaphragmatic excursion after cardiac surgery using the anatomical M-mode: a randomized crossover study. Intensive Care Med. 2015;41:650–6.

    Article  Google Scholar 

  9. Lerolle N, Guerot E, Dimassi S, et al. Ultrasonographic diagnostic criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest. 2009;135:401–7.

    Article  Google Scholar 

  10. Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:734.

    Article  Google Scholar 

  11. Zambon M, Beccaria P, Matsuno J, et al. Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med. 2016;44:1347–52.

    Article  Google Scholar 

  12. Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.

    Article  Google Scholar 

  13. Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.

    Article  CAS  Google Scholar 

  14. Alrajab S, Youssef AM, Akkus NI, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care. 2013;17:R208.

    Article  Google Scholar 

  15. Lichtenstein D, Meziere G, Biderman P, Gepner A. The comet tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999;25:383–8.

    Article  CAS  Google Scholar 

  16. Lichtenstein D, Meziere G, Biderman P, Gepner A. The “lung point”: an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;26:1434–40.

    Article  CAS  Google Scholar 

  17. Lichtenstein DA, Lascols N, Prin S, Mezière G. The “lung pulse” an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003;29:2187–92.

    Article  Google Scholar 

  18. Mattison LE, Coppage L, Alderman DF, Herlong JO, Sahn SA. Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest. 1997;111:1018–23.

    Article  CAS  Google Scholar 

  19. Doust BD, Baum JK, Maklad NF, Doust VL. Ultrasonic evaluation of pleural opacities. Radiology. 1975;114:135–40.

    Article  CAS  Google Scholar 

  20. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Meziere G. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25:955–8.

    Article  CAS  Google Scholar 

  21. Weinberg B, Diakoumakis EE, Kass EG, Seife B, Zvi ZB. The air bronchogram: sonographic demonstration. Am J Roentgenol. 1986;147:593–5.

    Article  CAS  Google Scholar 

  22. Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD. Ultrasonographic evaluation of pulmonary consolidation. Am Rev Respir Dis. 1992;146:757–62.

    Article  CAS  Google Scholar 

  23. Lichtenstein D, Meziere G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24:1331–4.

    Article  CAS  Google Scholar 

  24. Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156:1640–6.

    Article  CAS  Google Scholar 

  25. Chiumello D, Mongodi S, Algieri I, Vergani GL, Orlando A, Via G, Crimella F, Cressoni M, Mojoli F. Assessment of lung aeration and recruitment by CT scan and ultrasound in ARDS patients. Crit Care Med. 2018;46:1761–8.

    Article  Google Scholar 

  26. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.

    Article  Google Scholar 

  27. Pesenti A, Musch G, Lichtenstein D, et al. Imaging in acute respiratory distress syndrome. Intensive Care Med. 2016;42(5):686–98.

    Article  Google Scholar 

  28. Mongodi S, Orlando A, Tavazzi G, et al. Veno-venous extracorporeal membrane oxygenation for acute respiratory distress syndrome in a patient with acute right heart failure. J Cardiothorac Vasc Anesth. 2017b;31(4):1374–7.

    Article  Google Scholar 

  29. Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70.

    Article  Google Scholar 

  30. Mekontso Dessap A, Boissier F, Leon R, et al. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;38(9):1786–92.

    Article  Google Scholar 

  31. Mojadidi MK, Winoker JS, Roberts SC, et al. Accuracy of conventional transthoracic echocardiography for the diagnosis of intracardiac right-to-left shunt: a meta-analysis of prospective studies. Echocardiography. 2014;31:1036–48.

    Article  Google Scholar 

  32. Tavazzi G, Pozzi M, Via G, et al. Weaning failure for disproportionate hypoxemia caused by paradoxical response to positive end-expiratory pressure in a patient with patent foramen ovale. Am J Respir Crit Care Med. 2016;193(1):e1–2.

    Article  Google Scholar 

  33. Vieillard-Baron A, Charron C, Caille V, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6.

    Article  Google Scholar 

  34. Soldati G, Inchingolo R, Smargiassi A, et al. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med Biol. 2012;38(7):1169–79.

    Article  Google Scholar 

  35. Via G, Lichtenstein D, Mojoli F, et al. Whole lung lavage: a unique model for ultrasound assessment of lung aeration changes. Intensive Care Med. 2010;36(6):999–1007.

    Article  Google Scholar 

  36. Soummer A, Perbet S, Brisson H, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med. 2012;40(7):2064–72.

    Article  Google Scholar 

  37. Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;183:341–7.

    Article  Google Scholar 

  38. Markota A, Golub J, Stožer A, Fluher J, Prosen G, Bergauer A, Svenšek F, Sinkovič A. Absence of lung sliding is not a reliable sign of pneumothorax in patients with high positive end-expiratory pressure. Am J Emerg Med. 2016;34:2034–6.

    Article  Google Scholar 

  39. Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MBP, Cinnella G, Gattinoni L, Quintel M. Imaging in acute respiratory distress syndrome. Intensive Care Med. 2016;42:686–98.

    Article  Google Scholar 

  40. Wang XT, Ding X, Zhang HM, Chen H, Su LX, Liu DW, Chinese Critical Ultrasound Study Group (CCUSG). Lung ultrasound can be used to predict the potential of prone positioning and assess prognosis in patients with acute respiratory distress syndrome. Crit Care. 2016;20:385.

    Article  Google Scholar 

  41. Bouhemad B, Liu ZH, Arbelot C, Zhang M, Ferarri F, Le Guen M, et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010;38:84–92.

    Article  Google Scholar 

  42. Nguyen M, Benkhadra S, Douguet C, et al. Real-time visualization of left lung consolidation relief using lung ultrasound. Am J Respir Crit Care Med. 2016;193(11):e59–60.

    Article  CAS  Google Scholar 

  43. Bouhemad B, Brisson H, Le-Guen M, et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;183(3):341–7.

    Article  Google Scholar 

  44. Constantin JM, Futier E, Cherprenet AL, et al. A recruitment maneuver increases oxygenation after intubation of hypoxemic intensive care unit patients: a randomized controlled study. Crit Care. 2010;14(2):R76.

    Article  Google Scholar 

  45. Prat G, Guinard S, Bizien N, et al. Can lung ultrasonography predict prone positioning response in acute respiratory distress syndrome patients? J Cri Care. 2015;32:36–41.

    Article  Google Scholar 

  46. Haddam M, Zieleskiewicz L, Perbet S, et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016;42(10):1546–56.

    Article  Google Scholar 

  47. Wang XT, Ding X, Zhang HM, Chinese Critical Ultrasound Study Group (CCUSG), et al. Lung ultrasound can be used to predict the potential of prone positioning and assess prognosis in patients with acute respiratory distress syndrome. Crit Care. 2016;20(1):385.

    Article  Google Scholar 

  48. Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.

    Article  Google Scholar 

  49. McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367(23):2233–9.

    Article  CAS  Google Scholar 

  50. Esteban A, Alía I, Tobin MJ, et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med. 1999;159(2):512–8.

    Article  CAS  Google Scholar 

  51. Moschietto S, Doyen D, Grech L, et al. Transthoracic echocardiography with Doppler tissue imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16(3):R81.

    Article  Google Scholar 

  52. Blumhof S, Wheeler D, Thomas K, et al. Change in diaphragmatic thickness during the respiratory cycle predicts extubation success at various levels of pressure support ventilation. Lung. 2016;194(4):519–25.

    Article  Google Scholar 

  53. Mayo P, Volpicelli G, Lerolle N, et al. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42(7):1107–17.

    Article  CAS  Google Scholar 

  54. Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–9.

    Article  CAS  Google Scholar 

  55. Caille V, Amiel JB, Charron C, et al. Echocardiography: a help in the weaning process. Crit Care. 2010;14:R120.

    Article  Google Scholar 

  56. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  Google Scholar 

  57. Lamia B, Maizel J, Ochagavia A, et al. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37:1696–701.

    Article  Google Scholar 

  58. Gerbaud E, Erickson M, Grenouillet-Delacre M, et al. Echocardiographic evaluation and N-terminal pro-brain natriuretic peptide measurement of patients hospitalized for heart failure during weaning from mechanical ventilation. Minerva Anestesiol. 2012;78:415–25.

    CAS  Google Scholar 

  59. Lerolle N, Guérot E, Dimassi S, et al. Ultrasonographic diagnostic criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest. 2009;135(2):401–7.

    Article  Google Scholar 

  60. Dubé B-P, Dres M, Mayaux J, et al. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax. 2017;72(9):811–8.

    Article  Google Scholar 

  61. Vivier E, Mekontso Dessap A, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38(5):796–803.

    Article  Google Scholar 

  62. Vorona S, Sabatini U, Al-Maqbali S, et al. Inspiratory muscle rehabilitation in critically ill adults. A systematic review and meta-analysis. Annals ATS. 2018;15(6):735–44.

    Article  Google Scholar 

  63. DiNino E, Gartman EJ, Sethi JM, et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69(5):423–7.

    Article  Google Scholar 

  64. Heunks L, Ottenheijm C. Diaphragm-protective mechanical ventilation to improve outcomes in ICU patients? Am J Respir Crit Care Med. 2018;197(2):150–2.

    Article  Google Scholar 

  65. Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41.

    Article  Google Scholar 

  66. Chiumello D, Mongodi S, Algieri I, et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in acute respiratory distress syndrome patients. Crit Care Med. 2018;46:1761–8.

    Article  Google Scholar 

  67. Zhao Z, Jiang L, Xi X, et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med. 2015;15:98.

    Article  Google Scholar 

  68. Antonio ACP, Knorst MM, Teixeira C. Lung ultrasound prior to spontaneous breathing trial is not helpful in the decision to wean. Respir Care. 2018;63:873–8.

    Article  Google Scholar 

  69. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatment for different phenotypes? Intensive Care Med. 2020;46:1099.

    Article  CAS  Google Scholar 

  70. Gargani L, Soliman-Aboumarie H, Volpicelli G, et al. Why, when, and how to use lung ultrasound during the COVID-19 pandemic: enthusiasm and caution. Eur Heart J Cardiovasc Imaging. 2020;21:941–8.

    Article  Google Scholar 

  71. Volpicelli G, Gargani L. Sonographic signs and patterns of COVID-19 pneumonia. Ultrasound J. 2020;12:22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboulkheir, A.T.Y., Al Tayar, A. (2022). Role of Point-of-Care Ultrasound in the Management of Mechanical Ventilation. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics