Skip to main content

Monitoring of Mechanical Ventilation

  • Chapter
  • First Online:
Personalized Mechanical Ventilation
  • 837 Accesses

Abstract

Mechanical ventilation (MV) is one of the most common interventions in the intensive care unit (ICU). Goals of MV include alleviation of the work of breathing and gas exchange enhancement while avoiding additional lung or respiratory muscle injury. Monitoring mechanical ventilation is important to maintain normal gas exchange and protect the lungs from any injury.

During mechanical ventilation, gas pressure, volume, and flow in the ventilator system fluctuate. We cannot see the pneumatic signals directly with our eyes, but we can observe them with special monitoring devices.

In this chapter, we discuss how we can monitor mechanical ventilation to ensure that the patient lungs are protected and the optimum gas exchange is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Size and distribution of the global volume of surgery in 2012. Bull World Health Organ. 2016;94(3):201F–9F.

    Article  Google Scholar 

  2. Wunsch H, Wagner J, Herlim M, Chong DH, Kramer AA, Halpern SD. ICU occupancy and mechanical ventilator use in the United States. Crit Care Med. 2013;41(12):2712–9.

    Article  Google Scholar 

  3. Barrett MSM, Elixhauser A, Honigman LS, Pines JM. Utilization of intensive care services, 2011. Statistical Brief #185. Healthcare Cost and Utilization Project. Rockville, MD: Agency for Healthcare Research and Quality; 2014.

    Google Scholar 

  4. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  5. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  Google Scholar 

  6. Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017;124(1):62–71.

    Article  Google Scholar 

  7. Inman KJ, Sibbald WJ, Rutledge FS, Speechley M, Martin CM, Clark BJ. Does implementing pulse oximetry in a critical care unit result in substantial arterial blood gas savings? Chest. 1993;104(2):542–6.

    Article  CAS  Google Scholar 

  8. Van de Louw A, Cracco C, Cerf C, Harf A, Duvaldestin P, Lemaire F, et al. Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med. 2001;27(10):1606–13.

    Article  Google Scholar 

  9. Pedersen T, Nicholson A, Hovhannisyan K, Moller AM, Smith AF, Lewis SR. Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev. 2014;3:CD002013.

    Google Scholar 

  10. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;1(8222):681–6.

    Google Scholar 

  11. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med. 1980;93(3):391–8.

    Google Scholar 

  12. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185(12):1307–15.

    Article  Google Scholar 

  13. Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.

    Article  CAS  Google Scholar 

  14. Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.

    Article  CAS  Google Scholar 

  15. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–7.

    Article  Google Scholar 

  16. Alian AA, Galante NJ, Stachenfeld NS, Silverman DG, Shelley KH. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis. J Clin Monit Comput. 2011;25(6):377–85.

    Article  Google Scholar 

  17. Nassar BS, Schmidt GA. Capnography during critical illness. Chest. 2016;149(2):576–85.

    Article  Google Scholar 

  18. Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care. 2000;4(4):207–15.

    Article  CAS  Google Scholar 

  19. Lam T, Nagappa M, Wong J, Singh M, Wong D, Chung F. Continuous pulse oximetry and capnography monitoring for postoperative respiratory depression and adverse events: a systematic review and meta-analysis. Anesth Analg. 2017;125(6):2019–29.

    Article  Google Scholar 

  20. Saunders R, Struys M, Pollock RF, Mestek M, Lightdale JR. Patient safety during procedural sedation using capnography monitoring: a systematic review and meta-analysis. BMJ Open. 2017;7(6):e013402.

    Article  Google Scholar 

  21. Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92(5):832–5.

    Article  CAS  Google Scholar 

  22. Warner KJ, Cuschieri J, Garland B, Carlbom D, Baker D, Copass MK, et al. The utility of early end-tidal capnography in monitoring ventilation status after severe injury. J Trauma. 2009;66(1):26–31.

    Google Scholar 

  23. Russell GB, Graybeal JM. The arterial to end-tidal carbon dioxide difference in neurosurgical patients during craniotomy. Anesth Analg. 1995;81(4):806–10.

    CAS  Google Scholar 

  24. Verscheure S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care. 2016;20(1):184.

    Article  Google Scholar 

  25. Rackley CR, MacIntyre NR. Low tidal volumes for everyone? Chest. 2019;156(4):783–91.

    Article  Google Scholar 

  26. Gattinoni L, Pesenti A. The concept of baby lung. Intensive Care Med. 2005;31(6):776–84.

    Article  Google Scholar 

  27. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure: computed tomographic scan study. Am Rev Respir Dis. 1987;136(3):730–6.

    Article  CAS  Google Scholar 

  28. Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21(Suppl 3):312.

    Article  Google Scholar 

  29. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    Article  CAS  Google Scholar 

  30. Villar J, Martin-Rodriguez C, Dominguez-Berrot AM, Fernandez L, Ferrando C, Soler JA, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843–50.

    Article  Google Scholar 

  31. Aoyama H, Pettenuzzo T, Aoyama K, Pinto R, Englesakis M, Fan E. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2018;46(2):300–6.

    Article  Google Scholar 

  32. Mellemgaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol Scand. 1966;67(1):10–20.

    Article  CAS  Google Scholar 

  33. Wong JJ, Loh TF, Testoni D, et al. Epidemiology of pediatric acute respiratory distress syndrome in Singapore: risk factors and predictive respiratory indices for mortality. Front Pediatr. 2014;25(2):78.

    Google Scholar 

  34. Floyd J, Wu L, Hay BD, et al. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings. Nature. 2015;528(7580):S53–9.

    Article  Google Scholar 

  35. Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med. 2008;36(3):669–75.

    Article  Google Scholar 

  36. Elliott JE, Duke JW, Hawn JA, et al. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2. J Physiol. 2014;592(20):4537–53.

    Article  CAS  Google Scholar 

  37. Kawamura G, Kitamura T, Homma I, et al. Mechanisms underlying the improvement of arte-rial oxygenation using positive end-expiratory pressure during surgery under sevoflurane anesthesia and propofol anesthesia: a retrospective clinical study. Masui. 2013;62(6):652–9.

    Google Scholar 

  38. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.

    Article  Google Scholar 

  39. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    Article  CAS  Google Scholar 

  40. Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-FIO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846–57.

    Article  Google Scholar 

  41. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22.

    Article  Google Scholar 

  42. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39(11):2452–7.

    Article  Google Scholar 

  43. Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation: risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195(8):985–92.

    Article  Google Scholar 

  44. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.

    Article  Google Scholar 

  45. Brochard L. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: yes. Intensive Care Med. 2017;43(2):250–2.

    Article  Google Scholar 

  46. Lu Q, Rouby JJ. Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Crit Care. 2000;4(2):91–100.

    Article  CAS  Google Scholar 

  47. Harris RS. Pressure-volume curves of the respiratory system. Respir Care. 2005;50(1):78–98. discussion 98–79

    Google Scholar 

  48. Gattinoni L, Mascheroni D, Basilico E, Foti G, Pesenti A, Avalli L. Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med. 1987;13(1):19–25.

    Article  CAS  Google Scholar 

  49. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G. Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest. 1984;86(1):58–66.

    Article  CAS  Google Scholar 

  50. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.

    Article  CAS  Google Scholar 

  51. Harris RS, Hess DR, Venegas JG. An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161(2 Pt 1):432–9.

    Article  CAS  Google Scholar 

  52. Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132–6.

    Article  Google Scholar 

  53. Jonson B, Svantesson C. Elastic pressure-volume curves: what information do they convey? Thorax. 1999;54(1):82–7.

    Article  CAS  Google Scholar 

  54. Roupie E, Dambrosio M, Servillo G, Mentec H, el Atrous S, Beydon L, et al. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152(1):121–8.

    Article  CAS  Google Scholar 

  55. Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, et al. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008;34(11):2019–25.

    Article  Google Scholar 

  56. Mead J, Whittenberger JL, Radford EP Jr. Surface tension as a factor in pulmonary volume-pressure hysteresis. J Appl Physiol. 1957;10(2):191–6.

    Article  CAS  Google Scholar 

  57. Cooper JD, Grillo HC. The evolution of tracheal injury due to ventilatory assistance through cuffed tubes: a pathologic study. Ann Surg. 1969;169(3):334–48.

    Article  CAS  Google Scholar 

  58. Mathias DB, Wedley JR. The effects of cuffed endotracheal tubes on the tracheal wall. Br J Anaesth. 1974;46(11):849–52.

    Article  CAS  Google Scholar 

  59. Seegobin RD, van Hasselt GL. Endotracheal cuff pressure and tracheal mucosal blood flow: endoscopic study of effects of four large volume cuffs. Br Med J (Clin Res Ed). 1984;288(6422):965–8.

    Article  CAS  Google Scholar 

  60. Stauffer JL, Olson DE, Petty TL. Complications and consequences of endotracheal intubation and tracheotomy: a prospective study of 150 critically ill adult patients. Am J Med. 1981;70(1):65–76.

    Article  CAS  Google Scholar 

  61. Inada T, Uesugi F, Kawachi S, Inada K. The tracheal tube with a high-volume, low-pressure cuff at various airway inflation pressures. Eur J Anaesthesiol. 1998;15(6):629–32.

    Article  CAS  Google Scholar 

  62. Jain MK, Tripathi CB. Endotracheal tube cuff pressure monitoring during neurosurgery: manual vs. automatic method. J Anaesthesiol Clin Pharmacol. 2011;27(3):358–61.

    Article  Google Scholar 

  63. Stewart SL, Secrest JA, Norwood BR, Zachary R. A comparison of endotracheal tube cuff pressures using estimation techniques and direct intracuff measurement. AANA J. 2003;71(6):443–7.

    Google Scholar 

  64. Valencia M, Ferrer M, Farre R, Navajas D, Badia JR, Nicolas JM, et al. Automatic control of tracheal tube cuff pressure in ventilated patients in semirecumbent position: a randomized trial. Crit Care Med. 2007;35(6):1543–9.

    Article  Google Scholar 

  65. Babic SA, Chatburn RL. Laboratory evaluation of cuff pressure control methods. Respir Care. 2020;65(1):62–7.

    Article  Google Scholar 

  66. Bentz MR, Primack SL. Intensive care unit imaging. Clin Chest Med. 2015;36(2):219–34.

    Article  Google Scholar 

  67. Cadman A, Lawrance JA, Fitzsimmons L, et al. To clot or not to clot? That is the question in central venous catheters. Clin Radiol. 2004;59(9):349–55.

    Article  CAS  Google Scholar 

  68. Liu SY, Tsai IT, Yang PJ. Pneumothorax and deep sulcus sign. QJM. 2016;109(9):621–2.

    Article  Google Scholar 

  69. Umbrello M, Formenti P. Ultrasonographic assessment of diaphragm function in critically ill subjects. Respir Care. 2016;61(4):542–55.

    Article  Google Scholar 

  70. Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. Am J Respir Crit Care Med. 2013;188(2):213–9.

    Article  Google Scholar 

  71. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by M-mode ultrasonography. Chest. 2009;135(2):391–400.

    Article  Google Scholar 

  72. Mayo P, Volpicelli G, Lerolle N, et al. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42(7):1107–17.

    Article  CAS  Google Scholar 

  73. Gottesman E, Mccool FD. Ultrasound evaluation of the paralyzed diaphragm. Am J Respir Crit Care Med. 1997;55(5):1570–4.

    Article  Google Scholar 

  74. Summerhill EM, El-Sameed YA, Glidden TJ, et al. Monitoring recovery from diaphragm paralysis with ultrasound. Chest. 2008;133(3):737–43.

    Article  Google Scholar 

  75. David C, Benditt JO, Scott E, et al. Diaphragm thickening during inspiration. J Appl Physiol. 1997;83(1):291–6.

    Article  Google Scholar 

  76. Ueki J, De Bruin PF, Pride NB. In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax. 1995;50(11):1157–61.

    Article  CAS  Google Scholar 

  77. Ayoub J, Cohendy R, Dauzat M, et al. Non-invasive quantification of diaphragm kinetics using m-mode sonography. Can J Anaesth. 1997;44(7):739–44.

    Article  CAS  Google Scholar 

  78. Ferrari G, De Filippi G, Elia F, et al. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J. 2014;6(1):8.

    Article  Google Scholar 

  79. Dinino E, Gartman EJ, Sethi JM, et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69(5):431–5.

    Article  Google Scholar 

  80. Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8.

    Article  Google Scholar 

  81. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–9.

    Article  Google Scholar 

  82. Wang XT, Ding X, Zhang HM, et al. Lung ultrasound can be used to predict the potential of prone positioning and assess prognosis in patients with acute respiratory distress syndrome. Crit Care. 2016;20(1):385.

    Article  Google Scholar 

  83. Soummer A, Perbet S, Brisson H, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med. 2012;40(7):2064–72.

    Article  Google Scholar 

  84. Young PJ, Rollinson M, Downward G, Henderson S. Leakage of fluid past the tracheal tube cuff in a benchtop model. Br J Anaesth. 1997;78(5):557–62.

    Article  CAS  Google Scholar 

  85. Lucangelo U, Zin WA, Antonaglia V, Petrucci L, Viviani M, Buscema G, et al. Effect of positive expiratory pressure and type of tracheal cuff on the incidence of aspiration in mechanically ventilated patients in an intensive care unit. Crit Care Med. 2008;36(2):409–13.

    Article  Google Scholar 

  86. Lipcsey M, Woinarski NC, Bellomo R. Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care. Ann Intensive Care. 2012;2(1):11.

    Article  Google Scholar 

  87. Creteur J. Muscle StO2 in critically ill patients. Curr Opin Crit Care. 2008;14(3):361–6.

    Article  Google Scholar 

  88. Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194.

    Article  CAS  Google Scholar 

  89. Santora RJ, Santora RJ, Moore FA. Monitoring trauma and intensive care unit resuscitation with tissue hemoglobin oxygen saturation. Crit Care. 2009;13(Suppl 5):S10.

    Article  Google Scholar 

  90. Wahr JA, Tremper KK, Samra S, Delpy DT. Near-infrared spectroscopy: theory and applications. J Cardiothorac Vasc Anesth. 1996;10:406–18. https://doi.org/10.1016/S1053-0770(96)80107-8.

    Article  CAS  Google Scholar 

  91. Orbegozo Cortes D, Rahmania L, Irazabal M, et al. Microvascular reactivity is altered early in patients with acute respiratory distress syndrome. Respir Res. 2016;17:59.

    Article  Google Scholar 

  92. Baydur A, Behrakis PK, Zin WA, et al. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.

    CAS  Google Scholar 

  93. Van de Woestijne KP, Trop D, Clement J. Influence of the mediastinum on the measurement of esophageal pressure and lung compliance in man. Pflugers Arch. 1971;323:323–41.

    Article  Google Scholar 

  94. Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patient ventilator interaction. Intensive Care Med. 2011;37:263–71.

    Article  Google Scholar 

  95. Mauri T, Bellani G, Grasselli G, et al. Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med. 2013;39:282–91.

    Article  Google Scholar 

  96. Bellani G, Bronco A, Arrigoni Marocco S, et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir Care. 2018;63:1341–9.

    Article  Google Scholar 

  97. Owens RL, Campana LM, Hess L, Eckert DJ, Loring SH, Malhotra A. Sitting and supine esophageal pressures in overweight and obese subjects. Obesity (Silver Spring). 2012;20(12):2354–60.

    Article  Google Scholar 

  98. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.

    Article  Google Scholar 

  99. Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med. 2017;5(14):285.

    Article  Google Scholar 

  100. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ismail, K., Lodhe, D. (2022). Monitoring of Mechanical Ventilation. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics