Skip to main content

Energy Storage Applications

  • Chapter
  • First Online:
High Resolution Manufacturing from 2D to 3D/4D Printing

Abstract

Additive manufacturing techniques can be exploited to produce effective energy storage devices such as batteries and supercapacitors. Direct ink writing, fused melt deposit, and selective laser sintering techniques are exploited for these purposes. Between them, direct ink writing is the most explored. These fabrication processes allow the production of either 2D or 3D devices with remarkable performances, in some cases. In the following, supercapacitors’ and batteries’ properties and figures of merit will be recalled briefly, and a description of the recent advances in additive manufacturing approaches to energy storage device production will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA Key, Key world energy statistics 2020. Int. Energy Agency 33, 4649 (2020). https://webstore.iea.org/download/direct/4035%0A, http://data.iea.org/payment/products/103-world-energy-statistics-and-balances-2018-edition-coming-soon.aspx%0A, https://www.oecd-ilibrary.org/energy/key-world-energy-statistics-2020_295f00f5-en

    Google Scholar 

  2. G.H. Oettinger, Energy roadmap 2050. Policy (2012). https://doi.org/10.2833/10759

  3. J. Zhang, C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b

    Article  CAS  Google Scholar 

  4. Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 286, 330–345 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.164

    Article  CAS  Google Scholar 

  5. J.P. Rivera-Barrera, N. Muñoz-Galeano, H.O. Sarmiento-Maldonado, SoC estimation for lithium-ion batteries: Review and future challenges. Electronics 6, 102 (2017). https://doi.org/10.3390/electronics6040102

    Article  Google Scholar 

  6. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017

    Article  CAS  Google Scholar 

  7. Y. Yang, E.G. Okonkwo, G. Huang, S. Xu, W. Sun, Y. He, On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Mater. 36, 186–212 (2021). https://doi.org/10.1016/j.ensm.2020.12.019

    Article  Google Scholar 

  8. G. Zhou, Next-Generation High Performance Lithium–Sulfur Batteries (2017), http://www.springer.com/series/8790

  9. W. Zhou, X. Liu, K. Zhou, J. Jia, Nanomaterials in Advanced Batteries and Supercapacitors (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-26082-2

    Book  Google Scholar 

  10. N. Chawla, N. Bharti, S. Singh, Recent advances in non-flammable electrolytes for safer lithium-ion batteries. Batteries 1, 1–26 (2019). https://doi.org/10.3390/batteries5010019

    Article  CAS  Google Scholar 

  11. P. Zaccagnini, A. Lamberti, A perspective on laser-induced graphene for micro-supercapacitor application. Appl. Phys. Lett. 120, 100501 (2022). https://doi.org/10.1063/5.0078707

    Article  CAS  Google Scholar 

  12. B.E. Conway, Electrochemical Supercapacitors (Springer US, Boston, 1999). https://doi.org/10.1007/978-1-4757-3058-6_10

    Book  Google Scholar 

  13. S.J. Cooper, A. Bertei, D.P. Finegan, N.P. Brandon, Simulated impedance of diffusion in porous media. Electrochim. Acta 251, 681–689 (2017). https://doi.org/10.1016/j.electacta.2017.07.152

    Article  CAS  Google Scholar 

  14. S. Dsoke, X. Tian, C. Täubert, S. Schlüter, M. Wohlfahrt-Mehrens, Strategies to reduce the resistance sources on electrochemical double layer capacitor electrodes. J. Power Sources 238, 422–429 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.031

    Article  CAS  Google Scholar 

  15. M. Idrees, S. Ahmed, Z. Mohammed, N.S. Korivi, V. Rangari, 3D printed supercapacitor using porous carbon derived from packaging waste. Addit. Manuf. 36, 101525 (2020). https://doi.org/10.1016/j.addma.2020.101525

    Article  CAS  Google Scholar 

  16. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms6714

    Article  CAS  Google Scholar 

  17. A. Lamberti, F. Perrucci, M. Caprioli, New insights on laser-induced graphene electrodes for flexible supercapacitors: Tunable morphology and physical properties. Nanotechnology 28, 174002 (2017). https://doi.org/10.1088/1361-6528/aa6615

    Article  CAS  Google Scholar 

  18. A. Lamberti, M. Serrapede, G. Ferraro, M. Fontana, F. Perrucci, S. Bianco, A. Chiolerio, S. Bocchini, All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Materials 4, 035012 (2017). https://doi.org/10.1088/2053-1583/aa790e

    Article  CAS  Google Scholar 

  19. M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero, A. Lamberti, Boosting electric double layer capacitance in laser-induced graphene-based supercapacitors. Adv. Sustain. Syst. 6 (2022). https://doi.org/10.1002/adsu.202100228

  20. B. Chen, Y. Jiang, X. Tang, Y. Pan, S. Hu, Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 9, 28433–28440 (2017). https://doi.org/10.1021/acsami.7b06804

    Article  CAS  Google Scholar 

  21. A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D’Arcy, Conducting polymers for Pseudocapacitive energy storage. Chem. Mater. 28, 5989–5998 (2016). https://doi.org/10.1021/acs.chemmater.6b01762

    Article  CAS  Google Scholar 

  22. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  23. M.J. Young, A.M. Holder, S.M. George, C.B. Musgrave, Charge storage in cation incorporated α-MnO2. Chem. Mater. 27, 1172–1180 (2015). https://doi.org/10.1021/cm503544e

    Article  CAS  Google Scholar 

  24. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  25. Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: Recent advances in fundamental understanding and materials development. Mater. Today Adv. 7, 100072 (2020). https://doi.org/10.1016/j.mtadv.2020.100072

    Article  Google Scholar 

  26. Y. Wang, Y.Z. Zhang, D. Dubbink, J.E. ten Elshof, Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49, 481–488 (2018). https://doi.org/10.1016/j.nanoen.2018.05.002

    Article  CAS  Google Scholar 

  27. K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/aenm.201800408

  28. Y. Ji, L. Li, R. Ye, N.D. Kim, Y. Li, Y. Yang, H. Fei, G. Ruan, Q. Zhong, Z. Peng, J.M. Tour, J. Zhang, C. Gao, High-performance Pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2015). https://doi.org/10.1002/adma.201503333

    Article  CAS  Google Scholar 

  29. F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci, S. Ferrero, E. Tresso, A. Lamberti, In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 10459–10465 (2016). https://doi.org/10.1021/acsami.6b00808

    Article  CAS  Google Scholar 

  30. T. Wang, L. Li, X. Tian, H. Jin, K. Tang, S. Hou, H. Zhou, X. Yu, 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta 319, 245–252 (2019). https://doi.org/10.1016/j.electacta.2019.06.163

    Article  CAS  Google Scholar 

  31. K. Ghosh, M. Pumera, MXene and MoS3−x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 5 (2021). https://doi.org/10.1002/smtd.202100451

  32. W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31 (2019). https://doi.org/10.1002/adma.201902725

  33. M. Beidaghi, C. Wang, Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 56, 9508–9514 (2011). https://doi.org/10.1016/j.electacta.2011.08.054

    Article  CAS  Google Scholar 

  34. Z. Wang, Q. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai, Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018). https://doi.org/10.1021/acsami.7b19635

    Article  CAS  Google Scholar 

  35. B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed Pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020

    Article  CAS  Google Scholar 

  36. X. Li, H. Li, X. Fan, X. Shi, J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10 (2020). https://doi.org/10.1002/aenm.201903794

  37. M. Alexandreli, C.B. Brocchi, D.M. Soares, W.G. Nunes, B.G. Freitas, F.E.R. de Oliveira, L.E.C.A. Schiavo, A.C. Peterlevitz, L.M. da Silva, H. Zanin, Pseudocapacitive behaviour of iron oxides supported on carbon nanofibers as a composite electrode material for aqueous-based supercapacitors. J. Energy Storage 42, 103052 (2021). https://doi.org/10.1016/j.est.2021.103052

    Article  Google Scholar 

  38. A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, M.A. Pope, Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon 119, 257–266 (2017). https://doi.org/10.1016/j.carbon.2017.04.028

    Article  CAS  Google Scholar 

  39. C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965

    Article  CAS  Google Scholar 

  40. X. Tian, K. Tang, H. Jin, T. Wang, X. Liu, W. Yang, Z. Zou, S. Hou, K. Zhou, Boosting capacitive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 155, 562–569 (2019). https://doi.org/10.1016/j.carbon.2019.08.089

    Article  CAS  Google Scholar 

  41. S.H. Park, M. Kaur, D. Yun, W.S. Kim, Hierarchically designed electron paths in 3D printed energy storage devices. Langmuir 34, 10897–10904 (2018). https://doi.org/10.1021/acs.langmuir.8b02404

    Article  CAS  Google Scholar 

  42. S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Conducting polymer-based electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes. Polym. Int. 47, 28–33 (1998). https://doi.org/10.1002/(SICI)1097-0126(199809)47:1<28::AID-PI3>3.0.CO;2-C

    Article  CAS  Google Scholar 

  43. C.W. Wu, B. Unnikrishnan, I.W.P. Chen, S.G. Harroun, H.T. Chang, C.C. Huang, Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 25, 563–571 (2020). https://doi.org/10.1016/j.ensm.2019.09.026

    Article  Google Scholar 

  44. K. Ghosh, M. Pumera, Free-standing electrochemically coated MoS: Xbased 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale 13, 5744–5756 (2021). https://doi.org/10.1039/d0nr06479c

    Article  CAS  Google Scholar 

  45. J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou, W. Wang, Y. Lu, Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 1–13 (2019). https://doi.org/10.1007/s40820-019-0280-2

    Article  CAS  Google Scholar 

  46. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  47. L.A. Middlemiss, A.J.R. Rennie, R. Sayers, A.R. West, Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep. 6, 232–241 (2020). https://doi.org/10.1016/j.egyr.2020.03.029

    Article  Google Scholar 

  48. H.L. Pan, Y.S. Hu, H. Li, L.Q. Chen, Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12. Chin. Phys. B. 20, 1–5 (2011). https://doi.org/10.1088/1674-1056/20/11/118202

    Article  CAS  Google Scholar 

  49. K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016). https://doi.org/10.1002/adma.201505391

    Article  CAS  Google Scholar 

  50. K. Sun, T. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 1–5 (2013). https://doi.org/10.1002/adma.201301036

    Article  CAS  Google Scholar 

  51. J. Hu, Y. Jiang, S. Cui, Y. Duan, H. Guo, L. Lin, Y. Lin, J. Zheng, F. Pan, J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu, H. Guo, L. Lin, Y. Lin, J. Zheng, K. Amine, F. Pan, 3D-printed cathodes of LiMn 1-x Fe x PO 4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201600856

  52. A.J. Blake, R.R. Kohlmeyer, J.O. Hardin, E.A. Carmona, B. Maruyama, J.D. Berrigan, H. Huang, M.F. Durstock, 3D printable ceramic – Polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Laser Phy. Rev. 6, 1–10 (2017). https://doi.org/10.1002/aenm.201602920

    Article  CAS  Google Scholar 

  53. C. Reyes, R. Somogyi, S. Niu, M.A. Cruz, F. Yang, M.J. Catenacci, C.P. Rhodes, B.J. Wiley, 3D printing a complete lithium ion battery with fused filament fabrication. ACS Appl. Energy Mater. 1, 5268–5279 (2018). https://doi.org/10.1021/acsaem.8b00885

    Article  CAS  Google Scholar 

  54. Q. Chen, R. Xu, Z. He, K. Zhao, L. Pan, Printing 3D gel polymer electrolyte in lithium-ion microbattery using Stereolithography. J. Electrochem. Soc. 164, 1852–1857 (2017). https://doi.org/10.1149/2.0651709jes

    Article  CAS  Google Scholar 

  55. T. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018). https://doi.org/10.1002/adma.201703027

    Article  CAS  Google Scholar 

  56. J. Kasemchainan, C. Kuss, D.E.J. Armstrong, D. Cai, R.J. Wallace, F.H. Richter, H.J. Thijssen, P.G. Bruce, Environmental science ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/C7EE02723K

    Article  Google Scholar 

  57. W. Li, Y. Zhou, I.R. Howell, Y. Gai, A.R. Naik, S. Li, K.R. Carter, J.J. Watkins, Direct imprinting of scalable, high-performance woodpile electrodes for three-dimensional lithium-ion Nanobatteries. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b14649

  58. Y. Qiao, Y. Liu, C. Chen, H. Xie, Y. Yao, S. He, W. Ping, 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO 2 batteries. Adv. Funct. Mater. 28, 1805899 (2018). https://doi.org/10.1002/adfm.201805899

    Article  CAS  Google Scholar 

  59. M. Cheng, Y. Jiang, W. Yao, Y. Yuan, R. Deivanayagam, T. Foroozan, Z. Huang, B. Song, R. Rojaee, T. Shokuhfar, Y. Pan, J. Lu, R. Shahbazian-yassar, Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv. Funct. Mater. 28, 1800615 (2018). https://doi.org/10.1002/adma.201800615

    Article  CAS  Google Scholar 

  60. A. Maurel, M. Courty, B. Fleutot, H. Tortajada, M. Armand, S. Grugeon, S. Panier, L. Dupont, Highly loaded graphite-PLA composite based filaments for lithium-ion battery 3D-printing. ECS Meet. Abstr. (2018). https://doi.org/10.1021/acs.chemmater.8b02062

  61. D.W. Mcowen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey, J.E. Gritton, T.R. Hamann, J. Dai, G.T. Hitz, L. Hu, E.D. Wachsman, 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, 1707132 (2018). https://doi.org/10.1002/adma.201707132

    Article  CAS  Google Scholar 

  62. C.W. Foster, G. Zou, Y. Jiang, M.P. Down, Next-generation additive manufacturing: Tailorable graphene/Polylactic (acid) filaments allow the fabrication of 3D printable porous anodes for utilisation within Lithium-ion batteries. Batteries Supercaps, 1–7 (2019). https://doi.org/10.1002/batt.201800148

  63. S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket, Y. Yao, J. Dai, L.Q. Garcia, B. Liu, T. Gao, S. Xu, S.R. Raghavan, J.W. Connell, Y. Lin, L. Hu, Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018). https://doi.org/10.1002/adma.201705651

    Article  CAS  Google Scholar 

  64. C. Zhang, K. Shen, B. Li, S. Li, S. Yang, Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J. Mater. Chem. A 6, 19960–19966 (2018). https://doi.org/10.1039/c8ta08559e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Zaccagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaccagnini, P., Lamberti, A. (2022). Energy Storage Applications. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_9

Download citation

Publish with us

Policies and ethics