Skip to main content

Volumetric 3D Printing

  • Chapter
  • First Online:
High Resolution Manufacturing from 2D to 3D/4D Printing

Abstract

Volumetric 3D printing can be defined as the technology which is the fastest to convert the idea of an object into a 3D version of the same. Indeed, through a continuous floodlighting of a photosensitive resin, the conversion from liquid to solid occurs under the observers’ eyes within few seconds time. The first volumetric 3D printing process was designed taking inspiration from holography, which consists of the representation of 3D images on a bidimensional plane from a light interference pattern. Later, the introduction of computed axial lithography furtherly enhanced the printing times. Nonetheless, the rotary motion of the resin vat combined with the projection of the longitudinal object sections at different azimuthal angles allowed to achieve the additive manufacturing of more complex geometries with respect to holographic 3D printing. In the last years, a new volumetric technique was reported, namely, the xolography process. Also in this case, the resin vat moves with respect to the light sources (in this case, there are two). Different from computed axial lithography, the resin vat does not rotate but rather moves linearly with a speed based on the frame rate used for the stack of layers’ projection. The present chapter aims to give a comprehensive overview of a relatively recent 3D printing technology, completed with a description of feasible materials for volumetric additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography (1986). https://doi.org/10.1145/634067.634234

  2. P.F. Jacobs, Fundamentals of stereolithography: Solid freeform fabrication proceedings (1992). https://doi.org/10.1017/CBO9781107415324.004, pp. 196–211

  3. A.K. O’Brien, C.N. Bowman, Impact of oxygen on photopolymerization kinetics and polymer structure. Macromolecules 39, 2501–2506 (2006). https://doi.org/10.1021/ma051863l

    Article  CAS  Google Scholar 

  4. T. Latychevskaia, Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl. Opt. 58, 3597 (2019). https://doi.org/10.1364/ao.58.003597

    Article  Google Scholar 

  5. D. Gabor, Holography, 1948–1971. Science 177(1972), 299–313 (1979). https://doi.org/10.1126/science.177.4046.299

    Article  Google Scholar 

  6. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). https://doi.org/10.1038/35003523

    Article  CAS  Google Scholar 

  7. Y. Lin, A. Harb, K. Lozano, D. Xu, K.P. Chen, Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Opt. Express 17, 16625 (2009). https://doi.org/10.1364/OE.17.016625

    Article  CAS  Google Scholar 

  8. K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, K.P. Chen, Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography. J. Appl. Phys. 108, 073113 (2010). https://doi.org/10.1063/1.3493119

    Article  CAS  Google Scholar 

  9. B. Liu, C. Zhan, X. Yao, S. Yan, B. Ren, Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale 12, 21401–21408 (2020). https://doi.org/10.1039/D0NR05546H

    Article  CAS  Google Scholar 

  10. M. Shusteff, A.E.M. Browar, B.E. Kelly, J. Henriksson, T.H. Weisgraber, R.M. Panas, N.X. Fang, C.M. Spadaccini, One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3 (2017). https://doi.org/10.1126/sciadv.aao5496

  11. J. Huang, Q. Qin, J. Wang, A review of stereolithography: Processes and systems. Processes 8, 1138 (2020). https://doi.org/10.3390/PR8091138

    Article  CAS  Google Scholar 

  12. C.-F. Lee, W.-F. Hsu, T.-H. Yang, R.-J. Chung, Three-dimensional (3D) printing implemented by computer-generated holograms for generation of 3D layered images in optical near field. Photonics 8, 286 (2021). https://doi.org/10.3390/photonics8070286

    Article  CAS  Google Scholar 

  13. B. Kelly, I. Bhattacharya, M. Shusteff, R.M. Panas, H.K. Taylor, C.M. Spadaccini, Computed Axial Lithography (CAL): Toward single step 3D printing of arbitrary geometries (2017)

    Google Scholar 

  14. B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, H.K. Taylor, Volumetric additive manufacturing via tomographic reconstruction. Science 363(2019), 1075–1079 (1979). https://doi.org/10.1126/science.aau7114

    Article  CAS  Google Scholar 

  15. Y. Shou, Thiol-ene materials promote volumetric 3D printing. MRS Bull. 46, 12 (2021). https://doi.org/10.1002/adma.202003376

    Article  CAS  Google Scholar 

  16. D. Loterie, P. Delrot, C. Moser, High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020). https://doi.org/10.1038/s41467-020-14630-4

    Article  CAS  Google Scholar 

  17. D. Loterie, P. Delrot, C. Moser, Volumetric 3D printing of elastomers by tomographic back-projections (2018). 10.13140/RG.2.2.20027.46889

    Google Scholar 

  18. C. Chung Li, J. Toombs, H. Taylor, Tomographic color Schlieren refractive index mapping for computed axial lithography, in Symposium on computational fabrication, ACM, (New York, 2020), pp. 1–7. https://doi.org/10.1145/3424630.3425421

  19. P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda, C. Moser, R. Levato, Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019). https://doi.org/10.1002/ADMA.201904209

    Article  CAS  Google Scholar 

  20. B. Zhang, L. Gao, Q. Xue, Z. Cui, L. Ma, H. Yang, Strengths, weaknesses, and applications of computational axial lithography in tissue engineering. Bio-Design Manuf. 3, 5–6 (2020). https://doi.org/10.1007/s42242-020-00057-9

    Article  Google Scholar 

  21. M. Regehly, Y. Garmshausen, M. Reuter, N.F. König, E. Israel, D.P. Kelly, C.-Y. Chou, K. Koch, B. Asfari, S. Hecht, Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020). https://doi.org/10.1038/s41586-020-3029-7

    Article  CAS  Google Scholar 

  22. C. Darkes-Burkey, R.F. Shepherd, High-resolution 3D printing in seconds. Nature 588, 594–595 (2020). https://doi.org/10.1038/d41586-020-03543-3

    Article  CAS  Google Scholar 

  23. C.C. Cook, E.J. Fong, J.J. Schwartz, D.H. Porcincula, A.C. Kaczmarek, J.S. Oakdale, B.D. Moran, K.M. Champley, C.M. Rackson, A. Muralidharan, R.R. McLeod, M. Shusteff, Highly tunable thiol-ene photoresins for volumetric additive manufacturing. Adv. Mater. 32, 2003376 (2020). https://doi.org/10.1002/adma.202003376

    Article  CAS  Google Scholar 

  24. H. Taylor, H. Heidari, C.C. Li, J. Toombs, S.M. Luk, 3D printing challenges and new concepts for production of complex objects, in 3D printing for energy applications, (Wiley, 2021), pp. 153–180. https://doi.org/10.1002/9781119560807.ch7

    Chapter  Google Scholar 

  25. H.L. van der Laan, M.A. Burns, T.F. Scott, Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8, 899–904 (2019). https://doi.org/10.1021/acsmacrolett.9b00412

    Article  CAS  Google Scholar 

  26. I. Karakurt, L. Lin, 3D printing technologies: Techniques, materials, and post-processing. Curr. Opin. Chem. Eng. 28, 134–143 (2020). https://doi.org/10.1016/j.coche.2020.04.001

    Article  Google Scholar 

  27. J.M. Unagolla, A.C. Jayasuriya, Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 18, 100479 (2020). https://doi.org/10.1016/j.apmt.2019.100479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Bertana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertana, V., Periolatto, M. (2022). Volumetric 3D Printing. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_6

Download citation

Publish with us

Policies and ethics