Skip to main content

Abstract

The chapters of this book describe the lively world which is moving around additive manufacturing (AM) and 3D printing with a deep focus on the polymer-based techniques and related applications. In the last chapter, final considerations on the future prospective are critically discussed to favor a better understanding of the expected next big steps in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Dong et al., 4D printed hydrogels: Fabrication, materials, and applications. Adv. Mater. Technol. 5, 2000034 (2020)

    Article  CAS  Google Scholar 

  2. S. Nayar, S. Bhuminathan, W. Bhat, Rapid prototyping and stereolithography in dentistry. J. Pharm. Bioallied Sci. 7, 218 (2015)

    Article  Google Scholar 

  3. G. Scordo et al., A novel highly electrically conductive composite resin for stereolithography. Mater. Today Commun. 19, 12–17 (2019)

    Article  CAS  Google Scholar 

  4. T. Abele et al., Two-photon 3D laser printing inside synthetic cells. Adv. Mater. 34, 2106709 (2022)

    Article  CAS  Google Scholar 

  5. C.A. Spiegel et al., 4D printing at the microscale. Adv. Funct. Mater. 30, 1907615 (2020)

    Article  CAS  Google Scholar 

  6. V. Bertana et al., Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin. Sci. Rep. 10, 1–11 (2020)

    Article  Google Scholar 

  7. U. Gulzar, C. Glynn, C. O’Dwyer, Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors. Curr. Opin. Electrochem. 20, 46–53 (2020)

    Article  CAS  Google Scholar 

  8. X. Li et al., Multimaterial microfluidic 3D printing of textured composites with liquid inclusions. Adv. Sci. 6, 1800730 (2019)

    Article  Google Scholar 

  9. J.G. Tait et al., Uniform Aerosol Jet printed polymer lines with 30μm width for 140ppi resolution RGB organic light emitting diodes. Org. Electron. 22, 40–43 (2015)

    Article  CAS  Google Scholar 

  10. F. Pires, A. Cachada, J. Barbosa, A.P. Moreira, P. Leitao, Digital twin in industry 4.0: Technologies, applications and challenges, in 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), (IEEE, 2019), pp. 721–726. https://doi.org/10.1109/INDIN41052.2019.8972134

    Chapter  Google Scholar 

  11. F. Barbaresco, M. Cocuzza, C.F. Pirri, S.L. Marasso, Application of a micro free-flow electrophoresis 3D printed lab-on-a-Chip for micro-nanoparticles analysis. Nano 10, 1277 (2020)

    CAS  Google Scholar 

  12. M.J. Lerman, J. Lembong, G. Gillen, J.P. Fisher, 3D printing in cell culture systems and medical applications. Appl. Phys. Rev. 5, 041109 (2018)

    Article  Google Scholar 

  13. Y. Liu et al., High-performance lignin-based water-soluble macromolecular Photoinitiator for the fabrication of hybrid hydrogel. ACS Sustain. Chem. Eng. 7, 4004–4011 (2019)

    Article  CAS  Google Scholar 

  14. A.A. Pawar et al., High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci. Adv. 2, e1501381 (2016)

    Article  Google Scholar 

  15. F. Li, N.P. Macdonald, R.M. Guijt, M.C. Breadmore, Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip 19, 35–49 (2018)

    Article  Google Scholar 

  16. M.J. Männel, N. Weigel, N. Hauck, T. Heida, J. Thiele, Combining hydrophilic and hydrophobic materials in 3D printing for fabricating microfluidic devices with spatial wettability. Adv. Mater. Technol. 6, 2100094 (2021)

    Article  Google Scholar 

  17. H.W. Tan, Y.Y.C. Choong, C.N. Kuo, H.Y. Low, C.K. Chua, 3D printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 127, 100945 (2022)

    Article  CAS  Google Scholar 

  18. H.W. Tan, T. Tran, C.K. Chua, A review of printed passive electronic components through fully additive manufacturing methods. Virtual Phys. Prototyp. 11, 271–288 (2016)

    Article  Google Scholar 

  19. N. Saengchairat, T. Tran, C.-K. Chua, A review: Additive manufacturing for active electronic components. Virtual Phys. Prototyp. 12, 31–46 (2017)

    Article  Google Scholar 

  20. Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 33, 2000713 (2021)

    Article  CAS  Google Scholar 

  21. I.T. Garces, C. Ayranci, Active control of 4D prints: Towards 4D printed reliable actuators and sensors. Sensors Actuators A Phys. 301, 111717 (2020)

    Article  CAS  Google Scholar 

  22. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017)

    Article  Google Scholar 

  23. G. Haghiashtiani, E. Habtour, S.-H. Park, F. Gardea, M.C. McAlpine, 3D printed electrically-driven soft actuators. Extreme Mech. Lett. 21, 1–8 (2018)

    Article  Google Scholar 

  24. J. Zhang et al., 3D printable, ultra-stretchable, self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface. Chem. Eng. J. 431, 133949 (2022)

    Article  CAS  Google Scholar 

  25. W. Zhang et al., 3D printed micro-electrochemical energy storage devices: From design to integration. Adv. Funct. Mater. 31, 2104909 (2021)

    Article  CAS  Google Scholar 

  26. D.M. Soares et al., Additive manufacturing of electrochemical energy storage systems electrodes. Adv. Energy Sustain. Res. 2, 2000111 (2021)

    Article  Google Scholar 

  27. S. Zhang et al., 3D-printed wearable electrochemical energy devices. Adv. Funct. Mater. 32, 2103092 (2022)

    Article  CAS  Google Scholar 

  28. J. Yan et al., Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Mater. Today (2022). https://doi.org/10.1016/j.mattod.2022.03.014

  29. A. Camposeo, L. Persano, M. Farsari, D. Pisignano, Additive manufacturing: Applications and directions in photonics and optoelectronics. Adv. Opt. Mater. 7, 1800419 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Luigi Marasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballesio, A., Parmeggiani, M., Cocuzza, M., Marasso, S.L. (2022). Future Prospective. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_11

Download citation

Publish with us

Policies and ethics