Skip to main content

Diabetes and Atherosclerosis

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 750 Accesses

Abstract

This review summarizes pathogenic mechanisms leading to the development of atherosclerosis in diabetes. Contributing factors to endothelial dysfunction including nitric oxide, prostaglandins, oxidative stress, and pro-inflammatory mediators as well as hemodynamic flow changes are described. How factors contributing to endothelial dysfunction lead to changes in lipoprotein levels and to modification of lipoproteins as well as formation of modified lipoprotein immune complexes and how that contribute to foam cell formation is also detailed. New chapters were added on the novel role of sphingolipids in the development of atherosclerosis in diabetes and how microRNAs can influence the several pathogenic mechanisms leading to accelerated development of atherosclerosis in diabetes. The inflammatory component of atherosclerosis was also reviewed by examining macrophage activation by modified lipoproteins and modified LDL immune complexes, reviewing release of cytokines and growth factors and atheroma expansion as well as metalloproteinases and plaque rupture. Finally, thrombi formation and alterations in platelet aggregation and abnormalities in the clotting and fibrinolytic system were discussed. Overall this chapter offers an update on the contributing factors and mechanisms leading to accelerated development of atherosclerosis in diabetes and provides a glimpse on the complexity and multifactorial nature of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nievelstein PFEM, Fogelman AM, Frank FS, Mottino G. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of LDL: a deep-etch and immunolocalization study of rapidly frozen tissue. Arterioscler Thromb. 1991;11:1795–805.

    Article  CAS  PubMed  Google Scholar 

  2. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW. Monocyte transmigration induced by modification of low-density lipoprotein in co-cultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991;88:2039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz D, Andalibi A, Chaverri-Almada L, Berliner JA, Kirchgessner T, Fang ZT, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM. The role of the Gro family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest. 1994;94:1968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajavashisth TB, Andalibi A, Territo MD, Berliner JA, Naveb M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low density lipoproteins. Nature. 1990;344:254–7.

    Article  CAS  PubMed  Google Scholar 

  5. Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292–301.

    Article  CAS  PubMed  Google Scholar 

  6. Hessler JR, Robertson AL Jr, Chisolm GM. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis. 1979;32:213–8.

    Article  CAS  PubMed  Google Scholar 

  7. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of LDL leads to cholesterol ester accumulation in human monocytes/macrophages. Proc Natl Acad Sci U S A. 1980;77:2214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Virella G, Lopes-Virella MF. Lipoprotein autoantibodies: measurement and significance. Clin Diagn Lab Immunol. 2003;10:499–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Virella G, Atchley D, Koskinen S, Zheng D, Lopes-Virella MF. DCCT/EDIC Research Group. Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol. 2002;105:81–92.

    Article  CAS  PubMed  Google Scholar 

  10. Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res. 2009;50(Suppl):S91–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hannun Y, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175–91.

    Article  CAS  PubMed  Google Scholar 

  12. Eich C, Manzo C, de Keijzer S, Bakker G-J, Reinieren-Beeren I, García-Parajo MF, Cambi A. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci Rep. 2016;6:20693.

    Article  CAS  PubMed Central  Google Scholar 

  13. Jiang X-C, Jing L. Sphingolipid metabolism and atherosclerosis. Handb Exp Pharmacol. 2013;216:133–46.

    Article  CAS  Google Scholar 

  14. Klein RL, Hammad SM, Baker NL, Hunt KJ, Al Gadban MM, Cleary PA, Virella G, Lopes-Virella MF. DCCT/EDIC Research Group. Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes. Metabolism. 2014;63(10):1287–95.

    Article  CAS  PubMed Central  Google Scholar 

  15. Lopes-Virella MF, Baker NL, Hunt KJ, Hammad SM, Arthur J, Virella G, Klein RL. DCCT/EDIC Research Group. Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. J Clin Lipidol. 2019;13(3):481–91.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol. 2018 May;25(3):227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18:677–85.

    Article  CAS  PubMed  Google Scholar 

  18. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, García-Cardeña G, Gimbrone MA. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis- susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871–6.

    Article  CAS  PubMed Central  Google Scholar 

  19. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. La Sala L, Prattichizzo F, Ceriello A. The link between diabetes and atherosclerosis. Eur J Prev Cardiol. 2019;26(2 Suppl):15–24.

    Article  PubMed  Google Scholar 

  21. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC. Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes. 2000;49:2170–7.

    Article  CAS  PubMed  Google Scholar 

  22. La Sala L, Cattaneo M, De Nigris V, Pujadas G, Testa R, Bonfigli AR, Genovese S, Ceriello A. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc Diabetol. 2016;15:71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidantresponses in cellular glucose variability. Cardiovasc Diabetol. 2018;17:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis P, Stefanovic N, Pete J, Calkin AC, Giunti S, Thallas-Bonke V, Jandeleit-Dahm KA, Allen TJ, Kola I, Cooper ME, de Haan JB. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation. 2007;115:2178–87.

    Article  CAS  PubMed  Google Scholar 

  25. Sessa WC. eNOS at a glance. J Cell Sci. 2004;117:2427–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Phys. 1994;266:C628–36.

    Article  CAS  Google Scholar 

  27. Gimbrone MA, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  28. Huszka M, Kaplar M, Rejto L, Tornai I, Palatka K, Laszlo P, Udvardy M. The association of reduced endothelium derived relaxing factor-NO production with endothelial damage and increased in vivo platelet activation in patients with diabetes mellitus. Thromb Res. 1997;86:173–80.

    Article  CAS  PubMed  Google Scholar 

  29. Moncada S, Palmer R, Higgs E. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  30. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89:444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci U S A. 2001;98:4202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dimmeler S, Haendeler J, Nehls M, Zeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997;185:601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V. Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci. 2007;120(Pt 3):492–501.

    Article  CAS  PubMed  Google Scholar 

  34. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell. 2003;115:139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998;279:234–7.

    Article  CAS  PubMed  Google Scholar 

  36. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276:2034–7.

    Article  CAS  PubMed  Google Scholar 

  37. Haldar SM, Stamler JS. S-nitrosylation: integrator of cardiovascular performance and oxygen delivery. J Clin Invest. 2013;123:101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287:4411–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hogman M, Frostell C, Arnberg H, Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet. 1993;341:1664–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kawabata A. Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in rat. Br J Pharmacol. 1996;117:236–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest. 1996;97:979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–6.

    Article  CAS  Google Scholar 

  43. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771–6.

    Article  CAS  PubMed  Google Scholar 

  44. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial-derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992;89:10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric oxide synthase from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274:32512–9.

    Article  CAS  PubMed  Google Scholar 

  46. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene disrupted mice. Science. 2001;293:2449–52.

    Article  CAS  PubMed  Google Scholar 

  47. Ku Lencordt PJ, Rosel E, Gerszten RE, Morales-Ruiz M, Dombkowski D, Atkinson WJ, Han F, Preffer F, Rosenzweig A, Sessa WC, Gimbrone MA, Ertl G, Huang PL. Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol Cell Physiol. 2004;286:C1195–202.

    Article  Google Scholar 

  48. Huang PL. Lessons learned from nitric oxide synthase knockout animals. Semin Perinatol. 2000;24:87–90.

    Article  CAS  PubMed  Google Scholar 

  49. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104:448–54.

    Article  CAS  PubMed  Google Scholar 

  50. Scherrer U, Randin D, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fontbonne AM, Eschwege EM. Insulin and cardiovascular disease. Paris prospective study. Diabetes Care. 1991;14:461–9.

    Article  CAS  PubMed  Google Scholar 

  52. Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorgani S, Lupien PJ. Hyperinsulinemia as an independent risk factor for ischaemic heart disease. N Engl J Med. 1996;334:952–7.

    Article  CAS  PubMed  Google Scholar 

  53. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:997–1017.

    Google Scholar 

  54. UK Prospective Diabetes Study Group. Lancet. 1998;353:854–65.

    Google Scholar 

  55. Baron AD. Insulin and the vasculature – old actors, new roles. J Investig Med. 1996;44:406–12.

    CAS  PubMed  Google Scholar 

  56. Anderson TJ, Gerhard MD, Meredith IT, Charbonneau F, Delagrange D, Creager MA, Selwyn AP, Ganz P. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75:71B–4B.

    Article  CAS  PubMed  Google Scholar 

  57. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev. 1990;70:427–51.

    Article  CAS  PubMed  Google Scholar 

  58. Jessup W, Dean RT. Autoinhibitor of murine macrophage mediated oxidation of LDL by nitric oxide synthesis. Atherosclerosis. 1993;101:145–55.

    Article  CAS  PubMed  Google Scholar 

  59. Ischiropoulos H, al Mehdi A. Peroxynitrate-mediated oxidative protein modifications. FEBS Lett. 1995;364:279–82.

    Article  CAS  PubMed  Google Scholar 

  60. Bhatia S, Shukla R, Venkata MS, Gambhir J, Madhava PK. Antioxidant status, lipid peroxidation and nitric oxide end prodicts in patients with type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003;36:557–62.

    Article  CAS  PubMed  Google Scholar 

  61. Moncada S. Biological importance of prostacyclin. Br J Pharmacol. 1982;76:3–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Colwell JA, Lopes-Virella MF, Winocour PD, Halushka PV. New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. In: Levin ME, O’Neal LW, editors. The diabetic foot. 4th ed. St. Louis, MO: Mosby-Year Book; 1988. p. 51–70.

    Google Scholar 

  63. Sekiguchi N, Umeda F, Masakado M, Ono Y, Hashimoto T, Nawata H. Immunohistochemical study of prostacyclin-stimulating factor (PSF) in the diabetic and atherosclerotic human coronary artery. Diabetes. 1997;46:1627–32.

    Article  CAS  PubMed  Google Scholar 

  64. Umeda F, Masakado M, Takei A. Difference in serum-induced prostacyclin production by cultured aortic and capillary endothelial cells. Prostaglandins Leukot Essent Fat Acids. 1997;56:51–5.

    Article  CAS  Google Scholar 

  65. Mitchell JA, Ahmetaj-Shala B, Kirkby NS, Wright WR, Mackenzie LS, Reed DM, Mohamed N. Role of prostacyclin in pulmonary hypertension. Glob Cardiol Sci Pract. 2014;2014:382–93.

    PubMed  PubMed Central  Google Scholar 

  66. Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol. 2019;176(8):1038–50.

    Article  CAS  PubMed  Google Scholar 

  67. Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, et al. Vascular COX-2 modulates blood pressure and thrombosis in mice. Sci Transl Med. 2012;4:132–54.

    Article  Google Scholar 

  68. Ahmetaj-Shala B, Kirkby NS, Knowles R, Al’Yamani M, Mazi S, Wang Z, et al. Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine: novel explanation of cardiovascular side effects associated with anti-inflammatory drugs. Circulation. 2015;131:633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Toda N, Bian K, Akiba T, Okamura T. Heterogeneity in mechanisms of bradykinin action in canine isolated blood vessels. Eur J Pharmacol. 1987;135:321–9.

    Article  CAS  PubMed  Google Scholar 

  70. Briner VA, Tsai P, Schrier RW. Bradykinin: potential for vascular constriction in the presence of endothelial injury. Am J Physiol Renal Fluid Electrolyte Physiol. 1993;264:F322–7.

    Article  CAS  Google Scholar 

  71. Greene EL, Velarde V, Jaffa AA. Role of reactive oxygen species in bradykinin induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension. 2000;35:942–7.

    Article  CAS  PubMed  Google Scholar 

  72. Velarde V, Ullian ME, Mornelli TA, Mayfield RK, Jaffa AA. Mechanisms of MAPK activation by bradykinin in vascular smooth muscle cells. Am J Physiol Cell Physiol. 1999;277:C253–61.

    Article  CAS  Google Scholar 

  73. Douillet CD, Velarde V, Christopher JT, Mayfield RK, Trojanowska ME, Jaffa AA. Mechanisms by which bradykinin promotes fibrosis in vascular smooth muscle cells: role of TGF-® and MAPK. Am J Physiol Heart Circ Physiol. 2000;279:H2829–37.

    Article  CAS  PubMed  Google Scholar 

  74. Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey TW, Schmaier AH. DCCT/EDIC Study Group. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003;52:1215–12221.

    Article  CAS  PubMed  Google Scholar 

  75. Christopher J, Jaffa AA. Diabetes modulates the expression of glomerular kinin receptors. Int Immunopharmacol. 2002;2:1771–9.

    Article  CAS  PubMed  Google Scholar 

  76. Christopher J, Velarde V, Zhang D, Mayfield D, Mayfield R, Jaffa AA. Regulation of B2 kinin receptors by glucose in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2000;280:H1537–46.

    Article  Google Scholar 

  77. Takahashi K, Ghater MA, Lam HC, O’Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990;33:306–50.

    Article  CAS  PubMed  Google Scholar 

  78. Metsarinne K, Saijonmaa O, Yki-Jarvinen H, Fyhrquist F. Insulin increases the release of endothelin in endothelial cell cultures in vitro but not in vivo. Metabolism. 1994;43:878–82.

    Article  CAS  PubMed  Google Scholar 

  79. Hattori Y, Kasai K, Nakamura T, Emoto T, Shimoda S. Effects of glucose and insulin on immunoreactive endothelin-1 release from cultured porcine aortic endothelial cells. Metabolism. 1991;40:165–9.

    Article  CAS  PubMed  Google Scholar 

  80. Anfossi G, Cavalot F, Massucco P, Mattiello L, Mularoni E, Hahn A, Trovati M. Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells. Metabolism. 1993;42:1081–3.

    Article  CAS  PubMed  Google Scholar 

  81. Park K, Mima A, Li Q, Rask-Madsen C, He P, Mizutani K, Katagiri S, Maeda Y, Wu I-H, Khamaisi M, Preil SR, Maddaloni E, Sørensen D, Rasmussen LM, Huang PL, King GL. Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insights. 2016;1(6):e86574.

    Google Scholar 

  82. Murakoshi N, Miyauchi T, Kakinuma Y, Ohuchi T, Goto K, Yanagisawa M, Yamaguchi I. Vascular endothelin-B receptor system in vivo plays a favorable inhibitory role in vascular remodeling after injury revealed by endothelin-B receptor-knockout mice. Circulation. 2002;106:1991–8.

    Article  CAS  PubMed  Google Scholar 

  83. Sachidanandam K, Portik-Dobos V, Harris AK, Hutchinson JR, Muller E, Johnson MH, Ergul A. Evidence for vasculoprotective effects of ETB receptors in resistance artery remodeling in diabetes. Diabetes. 2007;56:2753–8.

    Article  CAS  PubMed  Google Scholar 

  84. Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Yoshikawa J. Effect of the endothelin family of peptides on human coronary artery smooth-muscle cell migration. J Cardiovasc Pharmacol. 1998;31(Suppl 1):S84–9.

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez-Vita J, Ruiz-Ortega M, Ruperez M, Esteban V, Sanchez-Lopez E, Plaza JJ, Egido J. Endothelin-1, via ETA receptor and independently of transforming growth factor-beta, increases the connective tissue growth factor in vascular smooth muscle cells. Circ Res. 2005;97:125–34.

    Article  CAS  PubMed  Google Scholar 

  86. Lerman A, Webster MW, Chesebro JH, Edwards WD, Wei CM, Fuster V, Burnett JC Jr. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation. 1993;88:2923–8.

    Article  CAS  PubMed  Google Scholar 

  87. Iwasa S, Fan J, Shimokama T, Nagata M, Watanabe T. Increased immunoreactivity of endothelin-1 and endothelin B receptor in human atherosclerotic lesions. A possible role in atherogenesis. Atherosclerosis. 1999;146:93–100.

    Article  CAS  PubMed  Google Scholar 

  88. Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of long-term streptozotocin-induced diabetes on coronary vasoconstriction in isolated perfused rat heart. J Smooth Muscle Res. 2008;44:177–88.

    Article  PubMed  Google Scholar 

  89. Matsumoto T, Ozawa Y, Taguchi K, Kobayashi T, Kamata K. Diabetes-associated changes and role of N epsilon-(carboxymethyl)lysine in big ET-1-induced coronary vasoconstriction. Peptides. 2010;31:346–53.

    Article  CAS  PubMed  Google Scholar 

  90. Verma S, Arikawa E, Lee S, Dumont AS, Yao L, McNeill JH. Exaggerated coronary reactivity to endothelin-1 in diabetes: reversal with bosentan. Can J Physiol Pharmacol. 2002;80:980–6.

    Article  CAS  PubMed  Google Scholar 

  91. Katakam PV, Snipes JA, Tulbert CD, Mayanagi K, Miller AW, Busija DW. Impaired endothelin-induced vasoconstriction in coronary arteries of Zucker obese rats is associated with uncoupling of [Ca2+]i signaling. Am J Phys Regul Integr Comp Phys. 2006;290:R145–53.

    CAS  Google Scholar 

  92. Battistini B, Berthiaume N, Kelland NF, Webb DJ, Kohan DE. Profile of past and current clinical trials involving endothelin receptor antagonists: the novel “-sentan” class of drug. Exp Biol Med. 2006;231:653–95.

    CAS  Google Scholar 

  93. Lee DL, Wamhoff BR, Katwa LC, Reddy HK, Voelker DJ, Dixon JL, Sturek M. Increased endothelin-induced Ca2+ signaling, tyrosine phosphorylation, and coronary artery disease in diabetic dyslipidemic Swine are prevented by atorvastatin. J Pharmacol Exp Ther. 2003;306:132–40.

    Article  CAS  PubMed  Google Scholar 

  94. Colwell JA, Jokl R. Clotting disorders in diabetes. In: Porte D, Sherwin R, Rifkin H, editors. Diabetes mellitus: theory and practice. 5th ed. Norwalk, CT: Appleton and Lange; 1997. p. 1543–57.

    Google Scholar 

  95. Colwell JA, Winocour PD, Lopes-Virella MF. Platelet function and platelet interactions in atherosclerosis and diabetes mellitus. In: Rifkin H, Porte D, editors. Diabetes mellitus: theory and practice. New York, NY: Elsevier; 1989. p. 249–56.

    Google Scholar 

  96. Uedelhoven WM, Rutzel A, Meese CO, Weber PC. Smoking alters thromboxane metabolism in man. Biochim Biophys Acta. 1991;108:197–201.

    Article  Google Scholar 

  97. Davi G, Averna M, Catalano I, Barnagallo C, Ganci A, Notarbartolo A, Ciabattoni G, Patrono C. Increased thromboxane biosynthesis in type II a hypercholesterolemia. Circulation. 1992;85:1792–8.

    Article  CAS  PubMed  Google Scholar 

  98. Di Minno G, Davi G, Margaglione M, Cirillo F, Grandone E, Ciabattoni G, Catalano I, Strisciuglio P, Andria G, Patrono C. Abnormally high thromboxane biosynthesis in homozygous homocystinuria: evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest. 1993;92:1400–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Davi G, Gresele P, Violi F, Catalano M, Giammarresi C, Volpato R, Nenci GG, Ciabattoni G, Patrono C. Diabetes mellitus, hypercholesterolemia and hypertension, but not vascular disease per se, are associated with persistent platelet activation in vivo: evidence derived from the study of peripheral arterial disease. Circulation. 1997;96:69–75.

    Article  CAS  PubMed  Google Scholar 

  100. Martin W. The combined role of atheroma, cholesterol, platelets, the endothelium and fibrin in heart attacks and strokes. Med Hypotheses. 1984;15(3):305–22.

    Article  CAS  PubMed  Google Scholar 

  101. Tada M, Kuzuya T, Inoue M, Kodama K, Mishima M, Yamada M, Inui M. H Abe Elevation of thromboxane B2 levels in patients with classic and variant angina Pectoris. Circulation. 1981;64(6):1107–15.

    Article  CAS  PubMed  Google Scholar 

  102. Smyth EM. Thromboxane and the thromboxane receptor in cardiovascular disease. Clin Lipidol. 2010;5(2):209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 1990;60(4):577–84.

    Article  CAS  PubMed  Google Scholar 

  104. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  105. Harrison R. Physiological roles of xanthine oxidoreductase. Drug Metab Rev. 2004;36:363–75.

    Article  CAS  PubMed  Google Scholar 

  106. Pritchard KA Jr, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J Biol Chem. 2001;276:17621–4.

    Article  CAS  PubMed  Google Scholar 

  107. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Phys. 1993;265:E783–93.

    CAS  Google Scholar 

  108. Folcick VA, Nivar-Aristy RA, Krajewski LP, Cathcart MC. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995;96:504–10.

    Article  Google Scholar 

  109. Benz D, Mol JM, Ezaki M, Mori-Ito MN, Zelan I, Miyanohara A, Friedmann T, Parthasarathy S, Steinberg D, Witztum JL. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblasts expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995;270:5191–7.

    Article  CAS  PubMed  Google Scholar 

  110. Scheidegger K, Butler JS, Witztum JL. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem. 1997;272:21609–15.

    Article  CAS  Google Scholar 

  111. Patricia MK, Natarajan R, Dooley AN, Hernandez F, Gu JL, Berliner JA, Rossi JJ, Nadler JL, Meidell RS, Hedrick CC. Adenoviral delivery of a leukocyte-type 12 lipoxygenase ribozyme inhibits effects of glucose and platelet-derived growth factor in vascular endothelial and smooth muscle cells. Circ Res. 2001;88:659–65.

    Article  CAS  PubMed  Google Scholar 

  112. Patricia MK, Kim JA, Harper CM, Shih PT, Berliner JA, Natarajan R, Nadler JL, Hedrick CC. Lipoxygenase products increase monocyte adhesion to human aortic endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:2615–22.

    Article  CAS  PubMed  Google Scholar 

  113. Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med. 2000;28:1708–16.

    Article  CAS  PubMed  Google Scholar 

  114. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler Thromb Vasc Biol. 2016;36(10):2048–57.

    Article  CAS  PubMed Central  Google Scholar 

  115. Rollins BJ, Yoshimura T, Leonard EJ, Pober JS. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol. 1990;136:1229–33.

    CAS  PubMed Central  Google Scholar 

  116. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.

    Article  CAS  PubMed  Google Scholar 

  117. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21:103–15.

    Article  CAS  PubMed  Google Scholar 

  118. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carter AM, Grant PJ. Vascular homeostasis, adhesion molecules, and macrovascular disease in non-insulin dependent diabetes mellitus. Diabet Med. 1997;14:423–32.

    Article  CAS  PubMed  Google Scholar 

  120. De Meyer GR, Herman AG. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997;39:325–42.

    Article  Google Scholar 

  121. O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. J Clin Invest. 1993;92:945–51.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol. 1993;171:223–9.

    Article  CAS  Google Scholar 

  123. Poston RN, Haskard DO, Croucher JR, Gall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol. 1992;140:665–73.

    CAS  PubMed Central  Google Scholar 

  124. Hunt KJ, Baker NL, Cleary PA, Klein R, Virella G, Lopes-Virella MF. DCCT/EDIC Group of Investigators. Longitudinal association between endothelial dysfunction, inflammation, and clotting biomarkers with subclinical atherosclerosis in type 1 diabetes: an evaluation of the DCCT/EDIC cohort. Diabetes Care. 2025;38:1281–9.

    Article  Google Scholar 

  125. Pigott R, Dillon LP, Hemingway IH. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun. 1992;187:584–9.

    Article  CAS  Google Scholar 

  126. Gearing AJH, Hemingway I, Pigott R, Hughes J, Rees AJ, Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1 and VCAM-1: pathological significance. Ann NY Acad Sci. 1992;667:324–31.

    Article  CAS  PubMed  Google Scholar 

  127. Lampeter ER, Kishimoto TK, Rothlein R, Mainolfi EA, Bertrams J, Kolb H, Martin S. Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes. 1992;41:1668–71.

    Article  CAS  Google Scholar 

  128. Steiner M, Reinhardt KM, Krammer B, Ernst B, Blann AD. Increased levels of soluble adhesion molecules in type 2 (non-insulin dependent) diabetes mellitus are independent of glycemic control. Thromb Haemost. 1994;72:979–84.

    Article  CAS  PubMed  Google Scholar 

  129. Otsuki M, Hashimoto K, Morimoto Y, Kishimoto T, Kasayama S. Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes. 1997;46:2096–101.

    Article  CAS  Google Scholar 

  130. Kowalska I, Straczkowski M, Szelachowska M, Kinalska I, Prokop J, Bachorzewska-Gajewska H, Stepien A. Circulating E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in men with coronary artery disease assessed by angiography and disturbances of carbohydrate metabolism. Metabolism. 2002;51:733–6.

    Article  CAS  Google Scholar 

  131. Matsumoto K, Sera Y, Ueki Y, Inukai G, Niiro E, Miyake S. Comparison of serum concentrations of soluble adhesion molecules in diabetic microangiopathy and macroangiopathy. Diabet Med. 2002;19:822–6.

    Article  CAS  PubMed  Google Scholar 

  132. Jude EB, Douglas JT, Anderson SG, Young MJ, Boulton AJ. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P-and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur J Intern Med. 2002;13:185–9.

    Article  CAS  PubMed  Google Scholar 

  133. Koyama H, Maeno T, Fukumoto S, Shoji T, Yamane T, Yokoyama H, Emoto M, Shoji T, Tahara H, Inaba M, Hino M, Shioi A, Miki T, Nishizawa Y. Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation. 2003;108:524–9.

    Article  CAS  PubMed  Google Scholar 

  134. Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986;124:179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 2001;21:1876–90.

    Article  CAS  PubMed  Google Scholar 

  136. Hasturk H, Abdallah R, Kantarci A, Nguyen D, Giordano N, Hamilton J, Van Dyke TE. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler Thromb Vasc Biol. 2015;35:1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM01) expression and atheroma formation in normal rabbits. Mol Med. 1995;1:447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Virella G, Munoz Jose F, Galbraith Gillian MP, Gisinger C, Chassereau C, Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunol Immunopathol. 1995;75:179–89.

    Article  CAS  PubMed  Google Scholar 

  139. Wong BW, Wong D, McManus BM. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol. 2022;11:332–8.

    Article  Google Scholar 

  140. Beekhuizen H, van Furth R. Monocyte adherence to human vascular endothelium. Leukoc Biol. 1993;54:363–78.

    Article  CAS  Google Scholar 

  141. Pohlman TH, Staness KA, Beatty PG, Oehs HD, Harlan JM. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor a increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol. 1986;136:4548–53.

    Article  CAS  PubMed  Google Scholar 

  142. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF, Gimbrone MA. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress responsive element. Proc Natl Acad Sci U S A. 1993;90:4591–5.

    Article  CAS  PubMed Central  Google Scholar 

  143. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappa B binding. J Biol Chem. 2004;279:163–8.

    Article  CAS  PubMed  Google Scholar 

  144. Korenaga R, Ando J, Kosaki K, Isshiki M, Takada Y, Kamiya A. Negative transcriptional regulation of theVCAM-1 gene by fluid shear stress in murine endothelial cells. Am J Phys. 1997;273:C1506–15.

    Article  CAS  Google Scholar 

  145. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA, García-Cardeña G. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest. 2006;116:49–58.

    Article  CAS  PubMed  Google Scholar 

  146. Atkins GB, Simon DI. Interplay between NF-κB and Kruppel-like factors in vascular inflammation and atherosclerosis: location, location, location. J Am Heart Assoc. 2013;2:e000290.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest. 1995;95:1363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Le NT, Takei Y, Izawa-Ishizawa Y, Heo KS, Lee H, Smrcka AV, Miller BL, Ko KA, Ture S, Morrell C, Fujiwara K, Akaike M, Abe J. Identification of activators of ERK5 transcriptional activity by high-throughput screening and the role of endothelial ERK5 in vasoprotective effects induced by statins and antimalarial agents. J Immunol. 2014;193:3803–15.

    Article  CAS  PubMed  Google Scholar 

  149. Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M, Schmidt M. Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem. 2010;285:26199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA. Biomechanical forces in atherosclerosis resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res. 2007;101:723–33.

    Article  CAS  PubMed  Google Scholar 

  151. Hsieh CY, Hsiao HY, Wu WY, Liu CA, Tsai YC, Chao YJ, Wang DL, Hsieh HJ. Regulation of shear-induce nuclear translocation of the Nrf2 transcription factor in endothelial cells. J Biomed Sci. 2009;16(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Blagovic K, Kim LY, Voldman J. Microfluidic perfusion for regulating diffusible signaling in stem cells. PLoS One. 2011;6:e22892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fledderus JO, Boon RA, Volger OL, Hurttila H, Ylä-Herttuala S, Pannekoek H, Levonen AL, Horrevoets AJ. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:1339–46.

    Article  CAS  Google Scholar 

  154. Boon RA, Horrevoets AJ. Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie. 2009;29:39–40, 41–3.

    Article  CAS  PubMed  Google Scholar 

  155. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA, García-Cardeña G. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem. 2005;280:26714–9.

    Article  CAS  PubMed  Google Scholar 

  156. Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation. 2005;112:720–6.

    Article  CAS  PubMed  Google Scholar 

  157. Atkins GB, Wang Y, Mahabeleshwar GH, Shi H, Gao H, Kawanami D, Natesan V, Lin Z, Simon DI, Jain MK. Hemizygous deficiency of Krüppel-like factor 2 augments experimental atherosclerosis. Circ Res. 2008;103:690–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015;12:361–74.

    Article  CAS  PubMed  Google Scholar 

  159. Yan MS, Marsden PA. Epigenetics in the vascular endothelium: looking from a different perspective in the epigenomics era. Arterioscler Thromb Vasc Biol. 2015;35:2297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li YS, Chien S, Wang N. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2010;107:3240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang KC, Nguyen P, Weiss A, Yeh YT, Chien HS, Lee A, Teng D, Subramaniam S, Li YS, Chien S. MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol. 2014;34:1437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chen K, Fan W, Wang X, Ke X, Wu G, Hu C. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells. Biochem Biophys Res Commun. 2012;427:138–42.

    Article  CAS  PubMed  Google Scholar 

  164. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY. Flow dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation. 2011;124:633–41.

    Article  CAS  PubMed  Google Scholar 

  165. Fan W, Fang R, Wu X, Liu J, Feng M, Dai G, Chen G, Wu G. Shear-sensitive microRNA-34a modulates flow-dependent regulation of endothelial inflammation. J Cell Sci. 2015;128:70–80.

    CAS  PubMed  Google Scholar 

  166. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL, Julia P, Maccario J, Boulanger CM, Mallat Z, Tedgui A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114:434–43.

    Article  CAS  PubMed  Google Scholar 

  168. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14:249–56.

    Article  CAS  PubMed  Google Scholar 

  169. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DYR, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem. 2014;5:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  CAS  PubMed  Google Scholar 

  172. La Sala L, Mrakic-Sposta SM, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol. 2018;17(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNAmiR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang HJ, Huang YL, Shih YY, et al. MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting. NAPDH oxidase 4 expression. Mediat Inflamm. 2014;2014:379537.

    Article  Google Scholar 

  175. Brennan E, Wang B, McClelland A, Mohan M, Marai M, Beuscart O, Derouiche S, Gray S, Pickering R, Tikellis C, de Gaetano M, Barry M, Belton O, Ali-Shah ST, Guiry P, Jandeleit-Dahm KAM, Cooper ME, Godson C, Kantharidis P. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes. 2017;66(8):2266–77.

    Article  CAS  PubMed  Google Scholar 

  176. Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler Thromb Vasc Biol. 1999;19:2981–92.

    Article  CAS  PubMed  Google Scholar 

  177. Renard CB, Suzuki LA, Kramer F, Tannock LR, von Herrath MG, Chait A, Bornfeldt KE. A new murine model of diabetes-accelerated atherosclerosis. Diabetes. 2002;51(Suppl 2):724.

    Google Scholar 

  178. Simionescu MD, Popov A, Hasu SM, Costache G, Faitar S, Vulpanovici A, Stancu C, Stern D, Simionescu N. Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. Am J Pathol. 1996;148:997–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995;15:431–40.

    Article  PubMed  Google Scholar 

  180. McGill HC Jr, McMahan CA, Zieske AW, Malcom GT, Tracy RE, Strong JP. Effects of non-lipid risk factors on atherosclerosis in youth with a favorable lipid profile. Circulation. 2001;103:1546–50.

    Article  CAS  PubMed  Google Scholar 

  181. Jarvisalo MJ, Putto-Laurila A, Jartti L, Lehtimaki T, Solakivi T, Ronnemaa T, Raitakari OT. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002;51:493–8.

    Article  CAS  PubMed  Google Scholar 

  182. Griffith RL, Virella GT, Stevenson HC, Lopes-Virella MF. LDL metabolism by macrophages activated with LDL immune complexes: a possible mechanism of foam cell formation. J Exp Med. 1988;168:1041–59.

    Article  CAS  PubMed  Google Scholar 

  183. Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arterioscler Thromb. 1991;11:1356–67.

    Article  CAS  PubMed  Google Scholar 

  184. Laakso M, Pyorala K. Lipid and lipoprotein abnormalities in diabetic patients with peripheral vascular disease. Atherosclerosis. 1988;74:55–63.

    Article  CAS  PubMed  Google Scholar 

  185. Lopes-Virella MF, Stone PG, Colwell JA. Serum high density lipoprotein in diabetes. Diabetologia. 1977;13:285–91.

    Article  CAS  Google Scholar 

  186. Lopes-Virella MF, Wohltmann HJ, Mayfield RK, Laodholt CB, Colwell JA. Effect of metabolic control on lipid, lipoprotein and apolipoprotein levels in 55 insulin-dependent diabetic patients: a longitudinal study. Diabetes. 1983;32:20–5.

    Article  CAS  PubMed  Google Scholar 

  187. Reaven GM, Javorski WC, Reaven EP. Diabetic hypertriglyceridemia. Am J Med Sci. 1975;269:382–9.

    Article  CAS  PubMed  Google Scholar 

  188. Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. 5-year incidence of atherosclerotic vascular disease in relation of general risk factors, insulin level, and abnormalities in lipoprotein composition in non-insulin-dependent diabetic and nondiabetic subjects. Circulation. 1990;82:27–36.

    Article  CAS  PubMed  Google Scholar 

  189. Nikilla EA. High density lipoproteins in diabetes. Diabetes. 1981;30:82–7.

    Article  Google Scholar 

  190. Semenkovich CF, Ostlund RE Jr, Schechtman KB. Plasma lipids in patients with type I diabetes mellitus: influence of race, gender and plasma glucose control: lipids do not correlate with glucose control in black women. Arch Intern Med. 1989;149:51–6.

    Article  CAS  PubMed  Google Scholar 

  191. Klein RL, Lyons TJ, Lopes-Virella MF. Metabolism of very low and low density lipoproteins isolated from normolipidaemic type II (non-insulin dependent) diabetic patients by human monocyte-derived macrophages. Diabetologia. 1990;33:299–305.

    Article  CAS  PubMed  Google Scholar 

  192. Klein RL, Lyons TJ, Lopes-Virella MF. Interaction of VLDL isolated from type I diabetic subjects with human monocyte-derived macrophages. Metabolism. 1989;38:1108–14.

    Article  CAS  PubMed  Google Scholar 

  193. Lopes-Virella MF, Sherer GK, Lees AM, Wohtmann MR, Sagel J, LeRoy EC, Colwell JA. Surface binding, internalization and degradation by cultured human fibroblasts of low density lipoproteins isolated from type I (insulin-dependent) diabetic patients: changes with metabolic control. Diabetologia. 1982;22:430–6.

    Article  CAS  PubMed  Google Scholar 

  194. Hiramatsu K, Bierman EL, Chair A. Metabolism of LDL from patients with diabetic hypertriglyceridemia by cultured human skin fibroblasts. Diabetes. 1985;34:8–14.

    Article  CAS  PubMed  Google Scholar 

  195. Bagdade JD, Subbaiah PV. Whole-plasma and high-density lipoprotein subfraction surface lipid composition in IDDM men. Diabetes. 1989;38:1226–30.

    Article  CAS  PubMed  Google Scholar 

  196. Bagdade JD, Buchanan WE, Kuusi T, Taskinen MR. Persistent abnormalities in lipoprotein composition in non-insulin dependent diabetes after intensive insulin therapy. Arteriosclerosis. 1990;10:232–9.

    Article  CAS  PubMed  Google Scholar 

  197. James RW, Pometta D. The distribution profiles of very low and low density lipoproteins in poorly controlled male, type II (non-insulin dependent) diabetic patients. Diabetologia. 1991;34:246–52.

    Article  CAS  PubMed  Google Scholar 

  198. James RW, Pometta D. Differences in lipoprotein subfraction composition and distribution between type I diabetic men and control subjects. Diabetes. 1990;39:1158–64.

    Article  CAS  PubMed  Google Scholar 

  199. Stein Y, Glangeaud MC, Fainaru M, Stein O. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cell fractions of human high density apoproteins. Biochim Biophys Acta. 1975;380:106–18.

    Article  CAS  PubMed  Google Scholar 

  200. Fielding DF, Reaven GM, Fielding PE. Human non-insulin dependent diabetes: identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by immunoabsorption of apolipoprotein E. Proc Natl Acad Sci U S A. 1982;79:6365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Fielding CJ, Reaven GM, Liu G, Fielding PE. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci U S A. 1984;81:2512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Biesbroeck RC, Albers JJ, Wahl PW, Weinberg CR. Abnormal composition of high-density lipoproteins in non-insulin dependent diabetics. Diabetes. 1982;31:126–31.

    Article  CAS  PubMed  Google Scholar 

  203. Uusitupa M, Siitonen O, Voutilainen E, Aro A, Hersio K, Pyorala K, Penttila I, Ehnholm C. Serum lipids and lipoproteins in newly diagnosed non-insulin dependent (type II) diabetic patients, with special reference to factors influencing HDL-cholesterol and triglyceride levels. Diabetes Care. 1986;9:17–22.

    Article  CAS  PubMed  Google Scholar 

  204. Ronnemaa T, Laakso M, Kallio V, Pyorala K, Marniemi J, Puukka P. Serum lipids, lipoproteins, and apolipoproteins and the excessive occurrence of coronary heart disease in non-insulin-dependent diabetic patients. Am J Epidemiol. 1989;130:632–45.

    Article  CAS  PubMed  Google Scholar 

  205. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem Int Ed Eng. 1990;29:565–94.

    Article  Google Scholar 

  206. Fu M-X, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe ST, Baynes JW. Glycation, glycoxidation and cross-linking of collagen by glucose. Kinetics, mechanisms and inhibition of late stages. Diabetes. 1994;43:676–83.

    Article  CAS  PubMed  Google Scholar 

  207. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end-product, N (carboxymethyl) lysine (CML), is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996;271:9982–6.

    Article  CAS  PubMed  Google Scholar 

  208. Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. Quantitation of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human LDL. Biochem J. 1997;322:317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Schleicher E, Deufel T, Wieland OH. Non-enzymatic glycation of human serum lipoproteins. FEBS Lett. 1987;129:1–4.

    Article  Google Scholar 

  210. Lyons TJ, Patrick JS, Baynes JW, Colwell JA, Lopes-Virella MF. Glycation of low density lipoprotein in patients with type 1 diabetes: correlations with other parameters of glycemic control. Diabetologia. 1986;29:685–9.

    Article  CAS  PubMed  Google Scholar 

  211. Pietri A, Dunn FL, Raskin P. The effect of improved diabetic control on plasma lipid and lipoprotein levels. A comparison of conventional therapy and subcutaneous insulin infusion. Diabetes. 1980;29:1001–5.

    Article  CAS  PubMed  Google Scholar 

  212. Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes. 1982;31:903–10.

    Article  CAS  PubMed  Google Scholar 

  213. Sasaki J, Cottam GL. Glycation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta. 1982;713:199–207.

    Article  CAS  PubMed  Google Scholar 

  214. Steinbrecher UP, Witztum JL. Glucosylation of low density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes. 1984;33:130–4.

    Article  CAS  PubMed  Google Scholar 

  215. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 1988;37:550–7.

    Article  CAS  PubMed  Google Scholar 

  216. Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization and metabolism of the glycated and non-glycated subfractions of low density lipoproteins isolated from type I diabetic patients and non-diabetic subjects. Diabetes. 1995;44:1093–8.

    Article  CAS  PubMed  Google Scholar 

  217. Watanabe J, Wohltmann HJ, Klein RL, Colwell JA, Lopes-Virella MF. Enhancement of platelet aggregation by low density lipoproteins from IDDM patients. Diabetes. 1988;37:1652–7.

    Article  CAS  PubMed  Google Scholar 

  218. Bucala R, Makita Z, Koschinsky T, Cerami, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A. 1993;90:6434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of LDL by a superoxide-dependent pathway. J Clin Invest. 1994;94:771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173:932–9.

    Article  CAS  PubMed  Google Scholar 

  221. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985;34:938–41.

    Article  CAS  PubMed  Google Scholar 

  222. Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994;43(8):1010–4.

    Article  CAS  PubMed  Google Scholar 

  223. Jenkins AJ, Klein RL, Chassereau CH, Hermayer KL, Lopes-Virella MF. LDL from Patients with Well Controlled IDDM is not More Susceptible to In Vitro Oxidation. Diabetes. 1996;45:762–7.

    Article  CAS  PubMed  Google Scholar 

  224. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988;241:215–8.

    Article  CAS  PubMed  Google Scholar 

  225. Rosenfeld ME, Palinski W, Yla-Herttula S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990;10:336–49.

    Article  CAS  PubMed  Google Scholar 

  226. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987;84:7725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Palinski W, Koschinsky T, Butler S, Miller E, Vlassara H, Cerami A, Witztum JL. Immunological evidence for the presence of AGE in atherosclerotic lesions of euglycemic rabbits. Arterioscler Thromb Vasc Biol. 1995;15:571–82.

    Article  CAS  PubMed  Google Scholar 

  228. Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002;106:2827–35.

    Article  CAS  PubMed  Google Scholar 

  229. Sakaguchi T, Yan SF, Yan SD, Belov D, Rong LL, Sousa M, Andrassy M, Marso SP, Duda S, Arnold B, Liliensiek B, Nawroth PP, Stern DM, Schmidt AM, Naka Y. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest. 2003;111:959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Regnstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to LDL oxidation and coronary atherosclerosis in man. Lancet. 1991;339:1183–6.

    Article  Google Scholar 

  231. Chiu HC, Jeng JR, Shieh SM. Increased oxidizability of plasma LDL from patients with coronary heart disease. Biochim Biophys Acta. 1994;225:200–8.

    Article  Google Scholar 

  232. Andrews B, Burnand K, Paganga G, Browse N, Rice-Evans C, Sommerville K, Leake D, Taub N. Oxidizability of LDL in patients with carotid or femoral artery atherosclerosis. Atherosclerosis. 1995;112:77–84.

    Article  CAS  Google Scholar 

  233. Penn MS, Chisolm GM. Oxidized lipoproteins, altered cell function and atherosclerosis. Atherosclerosis. 1994;108:S21–9.

    Article  PubMed  Google Scholar 

  234. Nagano Y, Arai H, Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci U S A. 1991;88:6457–61.

    Article  CAS  PubMed Central  Google Scholar 

  235. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992;89:10316–20.

    Article  CAS  PubMed Central  Google Scholar 

  236. Requena JR, Ahmed MU, Fountain CW, Degenhardt TP, Reddy S, Perez C, Lyons TJ, Jenkins AJ, Baynes JW, Thorpe SR. N-(carboxymethyl) ethanolamine: a biomarker of phospholipid modification by the Maillard Reaction in vivo. J Biol Chem. 1997;272:17473–9.

    Article  CAS  PubMed  Google Scholar 

  237. Pushkarsky T, Rourke L, Spiegel LA, Seldin MF, Bucala R. Molecular characterization of a mouse genomic element mobilized by advanced glycation endproduct modified-DNA (AGE-DNA). Mol Med. 1997;3:740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Que X, Hung M-Y, Yeang C, Gonen A, Prohaska TA, Sun X, Diehl C, Mååttå A, Gaddis DE, Bowden K, Pattison J, MacDonald JG, Ylä-Herttuala S, Mellon PL, Hedrick CC, Ley K, Miller YI, Glass CK, Peterson KL, Binder CJ, Tsimikas S, Witztum JL. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature. 2018;558(7709):301–6.

    Article  CAS  PubMed Central  Google Scholar 

  239. Kiechl S, Willeit J, Mayr M, Viehweider B, Oberhollenzer M, Kronenberg F, Wiederman C, Oberthaker S, Xu Q, Wiztum JL, Tsimikas S. Oxidized phospholipids, lipoprotein(a), Lipoprotein-associated phospholipase activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler Thromb Vasc Biol. 2007;27:1788–95.

    Article  CAS  PubMed  Google Scholar 

  240. Tsimikas S, Kiechl S, Willeit J, Mayr M, Miller ER, Kronenberg F, Xu Q, Bergmark K, Weger S, Oberhollenzer F, Witzum JL. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease. J Am Coll Cardiol. 2006;47(11):2219–28.

    Article  CAS  PubMed  Google Scholar 

  241. Virella G, Wilson K, Elkes J, Hammad SM, Rajab HA, Li Y, Chassereau C, Huang Y, Lopes-Virella M. Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clin Immunol. 2018;187:1–9.

    Article  CAS  PubMed  Google Scholar 

  242. Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res. 2022;118:115.

    Article  CAS  PubMed  Google Scholar 

  243. Yao S, Tian H, Miao C, Zhang D-W, Zhao L, Li Y, Yang N, Jiao P, Sang H, Guo S, Wang Y, Qin S. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and ER stress-CHP pathway. J Lipid Res. 2015;56(4):836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Palinski W, Yla-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low-density lipoprotein. Arteriosclerosis. 1990;10:325–35.

    Article  CAS  Google Scholar 

  245. Salonen JT, Yla-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992;339:883–7.

    Article  CAS  Google Scholar 

  246. Lehtimaki T, Lehtinen S, Solakivi T, Nikkila M, Jaakkola O, Jokela H, Yla-Herttuala S, Luoma JS, Koivula T, Nikkari T. Autoantibodies against oxidized low density lipoprotein in patients with angiographically verified coronary artery disease. Arterioscler Thromb Vasc Biol. 1999;19:23–7.

    Article  CAS  PubMed  Google Scholar 

  247. Erkkilä AT, Närvänen O, Lehto S, Uusitupa MIJ, Ylä-Herttuala S. Autoantibodies against oxidized low-density lipoprotein and cardiolipin in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 2000;20:204–9.

    Article  PubMed  Google Scholar 

  248. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G. Autoantibodies against oxidatively modified low-density lipoproteins in NIDDM. Diabetes. 1995;44:60–6.

    Article  CAS  PubMed  Google Scholar 

  249. Virella G, Virella I, Leman RB, Pryor MB, Lopes-Virella MF. Anti-oxidized low-density lipoprotein antibodies in patients with coronary heart disease and normal healthy volunteers. Int J Clin Lab Res. 1993;23:95–101.

    Article  CAS  Google Scholar 

  250. Boullier A, Hamon M, Walters-Laporte E, Martin-Nizart F, Mackereel R, Fruchart JC, Bertrand M, Duriez P. Detection of autoantibodies against oxidized low-density lipoproteins and of IgG-bound low density lipoproteins in patients with corocnary artery disease. Clin Chim Acta. 1995;238:1–10.

    Article  CAS  PubMed  Google Scholar 

  251. Leinonen JS, Rantalaiho V, Laippala P, Wirta O, Pasternack A, Alho H, Jaakkola O, Yla-Herttuala S, Koivula T, Lehtimaki T. The level of autoantibodies against oxidized LDL is not associated with the presence of coronary heart disease or diabetic kidney disease in patients with non-insulin-dependent diabetes mellitus. Free Radic Res. 1998;29:137–41.

    Article  CAS  PubMed  Google Scholar 

  252. Festa A, Kopp HP, Schernthaner G, Menzel EJ. Autoantibodies to oxidised low density lipoproteins in IDDM are inversely related to metabolic control and microvascular complications. Diabetologia. 1998;41:350–6.

    Article  CAS  PubMed  Google Scholar 

  253. Lopes-Virella MF, Virella G, Orchard TJ, Koskinen S, Evans RW, Becker DJ, Forrest KY. Antibodies to oxidized LDL and LDL-containing immune complexes as risk factors for coronary artery disease in diabetes mellitus. Clin Immunol. 1999;90:165–72.

    Article  CAS  PubMed  Google Scholar 

  254. Hulthe J, Wiklund O, Hurt-Camejo E, Bondjers G. Antibodies to oxidized LDL in relation to carotid atherosclerosis, cell adhesion molecules, and phospholipase A(2). Arterioscler Thromb Vasc Biol. 2001;21:269–74.

    Article  CAS  PubMed  Google Scholar 

  255. Shaw PX, Horkko S, Chang MK, Curtiss L, Palinski W, Silverman GJ, Witztum JL. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest. 2000;105:1731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Palinski W, Witztum JL. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med. 2000;247:371–80.

    Article  CAS  PubMed  Google Scholar 

  257. Hansson GK. Vaccination against atherosclerosis: science or fiction? Circulation. 2002;106:1599–601.

    Article  PubMed  Google Scholar 

  258. Virella G, Koskinen S, Krings G, Onorato JM, Thorpe SR, Lopes-Virella M. Immunochemical characterization of purified human oxidized low-density lipoprotein antibodies. Clin Immunol. 2000;95:135–44.

    Article  CAS  PubMed  Google Scholar 

  259. Virella G, Thorpe S, Alderson NL, Stephan EM, Atchley D, Wagner F, Lopes-Virella MF, the DCCT/EDIC Research Group. Autoimmune response to advanced glycosylation end-products of human low density lipoprotein. J Lipid Res. 2003;443:487–93.

    Article  Google Scholar 

  260. Hulthe J, Bokemark L, Fagerberg B. Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men. Arterioscler Thromb Vasc Biol. 2001;21:101–7.

    Article  CAS  PubMed  Google Scholar 

  261. Szondy E, Lengyel E, Mezey Z, Fust, Gero S. Occurrence of anti-low-density lipoprotein antibodies and circulating immune complexes in aged subjects. Mech Ageing Dev. 1985;29:117–23.

    Article  CAS  PubMed  Google Scholar 

  262. Tertov VV, Orekhov AN, Kacharava AG, Sobenin IA, Perova NV, Smirnov VN. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis. Exp Mol Pathol. 1990;52:300–8.

    Article  CAS  PubMed  Google Scholar 

  263. Atchley D, Lopes-Virella MF, Zheng D, Virella G, DCCT/EDIC Research Group. Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy. Diabetologia. 2002;45:1562–71.

    Article  CAS  Google Scholar 

  264. Lopes-Virella M, Virella G. Modified LDL immune complexes and cardiovascular disease. Curr Med Chem. 2019;26(9):1680–92.

    Article  CAS  PubMed  Google Scholar 

  265. Virella G, Lopes-Virella MF. The role of the immune system in the pathogenesis of diabetic complications. Front Endocrinol. 2014;5:126.

    Article  Google Scholar 

  266. Gisinger C, Virella GT, Lopes-Virella MF. Erthrocyte-bound low density lipoprotein (LDL) immune complexes lead to cholesteryl ester accumulation in human monocyte derived macrophages. Clin Immunol Immunopathol. 1991;59:37–52.

    Article  CAS  Google Scholar 

  267. Lopes-Virella MF, BinZafar N, Rackley S, Takei A, LaVia M, Virella G. The uptake of LDL-IC by human macrophages: predominant involvement of the FcγR I. Atherosclerosis. 1997;135:161–70.

    Article  CAS  PubMed  Google Scholar 

  268. Huang Y, Ghosh MJ, Lopes-Virella MF. Transcriptional and post-transcriptional regulation of LDL receptor gene expression in PMA-treated THP-1 cells by LDL-containing immune complexes. J Lipid Res. 1997;38:110–20.

    Article  CAS  PubMed  Google Scholar 

  269. Hunt KJ, Baker N, Cleary P, Backlund J-Y, Lyons T, Jenkins A, Virella G, Lopes-Virella MF. DCCT/EDIC Research Group. Oxidized LDL and AGE-LDL in circulating immune complexes strongly predict progression of carotid artery IMT in type 1 diabetes. Atherosclerosis. 2013;231(2):315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lopes-Virella MF, Baker NL, Hunt KJ, Lachin J, Nathan D, Virella G. DCCT/EDIC Research Group. Oxidized LDL immune complexes and coronary artery calcification in type 1 diabetes. Atherosclerosis. 2011;214(2):462–7.

    Article  CAS  PubMed  Google Scholar 

  271. Lopes-Virella MF, Bebu I, Hunt KJ, Virella G, Baker NL, Braffett B, Gao X, Lachin JM. DCCT/EDIC Research Group. Immune complexes and the risk of CVD in type 1 diabetes. Diabetes. 2019;68(9):1853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes. 2011;60(2):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lopes-Virella MF, Hunt KJ, Baker NL, Virella G, Moritz T, VADT Investigators. The levels of MDA-LDL in circulating immune complexes predict myocardial infarction in the VADT study. Atherosclerosis. 2012;224(2):526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Sasset L, Zhang Y, Dunn TM, Di Lorenzo A. Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol Metab. 2016;27:807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall AR. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000;20:2614–8.

    Article  CAS  PubMed  Google Scholar 

  276. Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol. 1996;16:4–11.

    Article  CAS  PubMed  Google Scholar 

  277. Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996;98:1455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Knapp M, Zendzian-Piotrowska M, Błachnio-Zabielska A, Zabielski P, Kurek K, Górski J. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic Res Cardiol. 2012;107(6):294.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Jeong TS, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang X. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest. 1998;101:905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Zhao YR, Dong JB, Li Y, Wu MP. Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 2012;90:867–73.

    Article  CAS  PubMed  Google Scholar 

  281. Kasumov T, Li L, Li M, Gulshan K, Kirwan JP, Liu X, Previs S, Willard B, Smith JD, McCullough A. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS One. 2015;10:e0126910.283.

    Article  Google Scholar 

  282. Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, Stojakovic T, Vlachopoulou E, Lokki ML, Nieminen MS, Klingenberg R, Matter CM, Hornemann T, Jüni P, Rodondi N, Räber L, Windecker S, Gencer B, Pedersen ER, Tell GS, Nygård O, Mach F, Sinisalo J, Lüscher TF. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Cordis GA, Yoshida T, Das DK. HPTLC analysis of sphingomylein, ceramide and sphingosine in ischemic/reperfused rat heart. J Pharm Biomed Anal. 1998;16:1189–93.

    Article  CAS  PubMed  Google Scholar 

  284. Kang SC, Kim BR, Lee SY, Park TS. Sphingolipid metabolism and obesity-induced inflammation. Front Endocrinol. 2013;4:67.

    Article  Google Scholar 

  285. Dawson G, Kruski AW, Scanu AM. Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res. 1976;17:125–31.

    Article  CAS  PubMed  Google Scholar 

  286. Breckenridge WC, Halloran JL, Kovacs K, Silver MD. Increase of gangliosides in atherosclerotic human aortas. Lipids. 1975;10:256–9.

    Article  CAS  PubMed  Google Scholar 

  287. Garner B, Priestman DA, Stocker R, Harvey DJ, Butters TD, Platt FM. Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J Lipid Res. 2002;43:205–14.

    Article  CAS  PubMed  Google Scholar 

  288. Chatterjee S, Bedja D, Mishra S, Amuzie C, Avolio A, Kass DA, Berkowitz D, Renehan M. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation. 2014;129:2403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Glaros EN, Kim WS, Rye KA, Shayman JA, Garner B. Reduction of plasma glycosphingolipid levels has no impact on atherosclerosis in apolipoprotein E-null mice. J Lipid Res. 2008;49:1677–81.

    Article  CAS  PubMed  Google Scholar 

  290. Lopes-Virella MF, Baker NL, Hunt KJ, Hammad SM, Arthur J, Virella G, Klein RL, DCCT/EDIC Research Group. Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. J Clin Lipidol. 2019;13(3):481–91.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Knapp M, Lisowska A, Zabielski P, Musiał W, Baranowski M. Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 2013;106:53–61.

    Article  CAS  PubMed  Google Scholar 

  292. Egom EE, Mamas MA, Chacko S, Stringer SE, Charlton-Menys V, El-Omar M, Chirico D, Clarke B, Neyses L, Cruickshank JK, Lei M, Fath-Ordoubadi F. Serum sphingolipids level as a novel potential marker for early detection of human myocardial ischaemic injury. Front Physiol. 2013;4:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Sattler K, Gräler M, Keul P, Weske S, Reimann CM, Jindrová H, Kleinbongard P, Sabbadini R, Bröcker-Preuss M, Erbel R, Heusch G, Levkau B. Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol. 2015;66:1470–85.

    Article  CAS  PubMed  Google Scholar 

  294. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N, Rutkowski JM, Wade MR, Tenorio VM, Kuo MS, Brozinick JT, Zhang BB, Birnbaum MJ, Summers SA, Scherer PE. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17:55–63.

    Article  CAS  PubMed  Google Scholar 

  295. Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev. 2008;29:381–402. PubMed: 18451260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278:10297–303.

    Article  CAS  PubMed  Google Scholar 

  297. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, Ory DS, Schaffer JE. Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem. 2013;288:2923–32.

    Article  CAS  PubMed  Google Scholar 

  299. Davis CN, et al. IL-1beta induces a MyD88-dependent and ceramide-mediated activation of Src in anterior hypothalamic neurons. J Neurochem. 2006;98:1379–89.

    Article  CAS  PubMed  Google Scholar 

  300. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science. 1988;240:1546–8.

    Article  CAS  PubMed  Google Scholar 

  301. Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med. 1986;164:1301–9.

    Article  CAS  PubMed  Google Scholar 

  302. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267(21):14998–5004.

    Article  CAS  PubMed  Google Scholar 

  303. Daffu G, del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci. 2013;14(10):19891–910.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med. 2009;87(3):235–47.

    Article  CAS  PubMed  Google Scholar 

  305. Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci U S A. 1994;91(19):8807–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Schmidt AM, Stern DM. RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol Metab. 2000;11(9):368–75.

    Article  CAS  PubMed  Google Scholar 

  307. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983–96.

    Article  CAS  PubMed  Google Scholar 

  308. Cuccurullo C, Iezzi A, Fazia ML, De Cesare D, Di Francesco A, Muraro R, Bei R, Ucchino S, Spigonardo F, Chiarelli F, Schmidt AM, Cuccurullo F, Mezzetti A, Cipollone F. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26(12):2716–23.

    Article  CAS  PubMed  Google Scholar 

  309. Rios FJ, Koga MM, Ferracini M, Jancar S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS One. 2012;7(5):e36632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Lundberg AM, Hansson GK. Innate immune signals in atherosclerosis. Clin Immunol. 2010;134(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  311. Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  312. Virella G, Muñoz JF, Galbraith GMP, Gissinger C, Chassereau C, Lopes-Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunol Immunopathol. 1995;75:179–89.

    Article  CAS  PubMed  Google Scholar 

  313. Saad AF, Virella G, Chassereau C, Boackle RJ, Lopes-Virella MF. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J Lipid Res. 2006;47(9):1975–83.

    Article  CAS  PubMed  Google Scholar 

  314. Al Gadban MM, Smith KJ, Soodavar F, Piansay C, Chassereau C, Twal WO, Klein RL, Virella G, Lopes-Virella MF, Hammad SM. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress. PLoS One. 2010;5(9):e12534.

    Article  PubMed  PubMed Central  Google Scholar 

  315. Truman JP, Al Gadban MM, Smith KJ, Jenkins RW, Mayroo N, Virella G, Lopes-Virella MF, Bielawska A, Hannun YA, Hammad SM. Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized low-density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release. Immunology. 2012;136(1):30–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Virella G, Wilson K, Elkes J, Hamma SM, Rajab HA, Li Y, Chassereau C, Huang Y, Lopes-Virella M. Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clin Immunol. 2018;187:1–9.

    Article  CAS  PubMed  Google Scholar 

  317. Rhoads JP, Lukens JR, Wilhelm AJ, et al. Oxidized LDL-immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. J Immunol. 2017;198:2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Li Y, Lu Z, Huang Y, Lopes-Virella MF, Virella G. F(ab′)2 fragments of anti-oxidized LDL IgG attenuate vascular inflammation and atherogenesis in diabetic LDL receptor-deficient mice. Clin Immunol. 2016;173:50–6.

    Article  CAS  PubMed  Google Scholar 

  319. Lu Z, Zhang X, Li Y, Lopes-Virella MF, Huang Y. TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes. Immunobiology. 2015;220(11):1246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science. 1989;243:393–6.

    Article  CAS  PubMed  Google Scholar 

  321. Stevenson HC, Dekaban GA, Miller PJ, Benyajati C, Pearson ML. Analysis of human blood monocyte activation at the level of gene expression. J Exp Med. 1985;161:503–13.

    Article  CAS  PubMed  Google Scholar 

  322. Ross R, Masuda J, Raines EW, Gown AM, Katsuda S, Sasahara M, Malden LT, Masuko H, Sato H. Localization of PDGF-b protein in macrophages in all phases of atherogenesis. Science. 1990;248:1009–12.

    Article  CAS  PubMed  Google Scholar 

  323. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, Ross R, Sporn M. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A. 1987;84:6020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Werb Z, Bonda MJ, Jones PA. Degradation of connective tissue matrices by macrophages: I. Proteolysis of elastin, glycoproteins, and collagens by proteinases isolated from macrophages. J Exp Med. 1980;152:1340–57.

    Article  CAS  PubMed  Google Scholar 

  325. Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA Jr. Interleukin 1 induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med. 1984;160:618–23.

    Article  CAS  PubMed  Google Scholar 

  326. Breviario F, Bertocchi F, Dejana E, Bussolino F. IL-1 induced adhesion of polymorphonuclear leukocytes to cultured human endothelial cells. Role of platelet-activating factor. J Immunol. 1988;141:3391–7.

    Article  CAS  PubMed  Google Scholar 

  327. Marx N, Imhof A, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, Maerz W, Homback V, Koenig W. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary heart disease. Circulation. 2003;107:1954–7.

    Article  CAS  PubMed  Google Scholar 

  328. Bertrand MJ, Tardif JC. Inflammation and beyond: new directions and emerging drugs for treating atherosclerosis. Expert Opin Emerg Drugs. 2017;22(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  329. Falk E. Why do plaques rupture? Circulation. 1992;86(Suppl III):30–42.

    Google Scholar 

  330. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrow MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    Article  CAS  PubMed  Google Scholar 

  331. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.

    Article  CAS  PubMed  Google Scholar 

  332. Amento EP, Ehsani N, Palmer H, Libby L. Cytokine positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb. 1991;11:1223–30.

    Article  CAS  PubMed  Google Scholar 

  333. Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaques. Am J Pathol. 1989;135:169–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Fuster V, Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 1994;90:2126–46.

    Article  CAS  PubMed  Google Scholar 

  335. Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis. 1982;42:41–51.

    Article  CAS  PubMed  Google Scholar 

  336. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays. 1992;14:455–63.

    Article  CAS  PubMed  Google Scholar 

  337. Sukhova G, Schoenbeck U, Rabkin E, Schoen FJ, Poole AR, Billinhurst RC, Libby P. Colocalization of the interstitial collagenase MMP-1 & MMP-13 with sites of cleaved collagen indicates their role in plaque destabilization. Circulation (Suppl). 1998;98:48.

    Google Scholar 

  338. Huang Y, Mironova M, Lopes-Virella MF. Oxidized LDL stimulates matrix metalloproteinase-1 expression in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:2640–7.

    Article  CAS  PubMed  Google Scholar 

  339. Huang Y, Fleming AJ, Wu S, Virella G, Lopes-Virella MF. Fc-gamma receptor cross-linking by immune complexes induces matrix metalloproteinase-1 in U937 cells via mitogen-activated protein kinase. Arterioscler Thromb Vasc Biol. 2000;20:2533–8.

    Article  CAS  PubMed  Google Scholar 

  340. Huang Y, Song L, Wu S, Fan F, Lopes-Virella MF. Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis. 2001;156:119–25.

    Article  CAS  PubMed  Google Scholar 

  341. Li Y, Devadoss JS, Sundararaj KP, Lopes-Virella MF, Huang Y. IL-6 and high glucose synergistically upregulate MMP-1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun. J Cell Biochem. 2010;110(1):248–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Sundararaj P, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y. Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J Biol Chem. 2009;284(20):13714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, Scharnagl H, Homback V, Koenig W. Antidiabetic PPAR – activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:283–8.

    Article  CAS  PubMed  Google Scholar 

  344. Li Y, Samuvel DJ, Sundararaj KP, Lopes-Virella MF, Huang Y. IL-6 and high glucose synergistically upregulate MMP-1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun. J Cell Biochem. 2010;110(1):248–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Schaub FJ, Han DK, Liles WC, Adams LD, Coats SA, Ramachandran RK, Seifert RA, Schwartz SM, Bowen-Pope DF. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med. 2000;6:790–6.

    Article  CAS  PubMed  Google Scholar 

  346. Tedgui A, Mallat Z. Apoptosis as a determinant of atherothrombosis. Thromb Haemost. 2001;86:420–6.

    Article  CAS  PubMed  Google Scholar 

  347. Moons AH, Levi M, Peters RJ. Tissue factor and coronary heart disease. Cardiovasc Res. 2002;53:313–25.

    Article  CAS  PubMed  Google Scholar 

  348. Marchini JF, Manica A, Crestani P, Dutzmann J, Folco EJ, Weber H, Libby P, Croce K. Oxidized low-density lipoprotein induces macrophage production of prothrombotic microparticles. J Am Heart Assoc. 2020;9(15):e015878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Colwell JA. Antiplatelet drugs and prevention of macrovascular disease in diabetes mellitus. Metabolism. 1992;41(Suppl 1):7–10.

    Article  CAS  PubMed  Google Scholar 

  350. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res. 2010;7(4):260–73.

    Article  CAS  PubMed  Google Scholar 

  352. Breitenstein A, Tanner FC, Luscher TF. Tissue factor and cardiovascular disease: quo vadis? Circ J. 2010;74:3–12.

    Article  CAS  Google Scholar 

  353. Ananyeva NM, Kouiavskaia DV, Shima M, Saenko EL. Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. Blood. 2002;99:4475–85.

    Article  CAS  Google Scholar 

  354. Dunn EJ, Ariens RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005;48:1198–206.

    Article  CAS  PubMed  Google Scholar 

  355. Ibbotson SH, Catto A, Davies JA, Grant PJ. The effect of insulin-induced hypoglycaemia on factor VIII:C concentrations and thrombin activity in subjects with type 1 (insulin-dependent) diabetes. Thromb Haemost. 1995;73:243–6.

    Article  CAS  PubMed  Google Scholar 

  356. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  CAS  Google Scholar 

  357. Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007;92:4352–8.

    Article  CAS  Google Scholar 

  358. Karatela RA, Sainani GS. Interrelationship between coagulation factor VII and obesity in diabetes mellitus (type 2). Diabetes Res Clin Pract. 2009;84:e41–4.

    Article  CAS  PubMed  Google Scholar 

  359. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham study. JAMA. 1987;258:1183–6.

    Article  CAS  PubMed  Google Scholar 

  360. Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G, Marturana I, Ferrara F, Novo S. An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb. 2010;17:1–11.

    Article  CAS  Google Scholar 

  361. Green D, Chan C, Kang J, Liu K, Schreiner P, Jenny NS, Tracy RP. Longitudinal assessment of fibrinogen in relation to subclinical cardiovascular disease: the CARDIA study. J Thromb Haemost. 2010;8:489–95.

    Article  CAS  Google Scholar 

  362. Klein RL, Hunter SJ, Jenkins AJ, Zheng D, Semler AJ, Clore J, Garvey WT. DCCT/ECIC study group. Fibrinogen is a marker for nephropathy and peripheral vascular disease in type 1 diabetes: studies of plasma fibrinogen and fibrinogen gene polymorphism in the DCCT/EDIC cohort. Diabetes Care. 2003;26:1439–48.

    Article  CAS  PubMed  Google Scholar 

  363. Hornsby WG, Boggess KA, Lyons TJ, Barnwell WH, Lazarchick J, Colwell JA. Hemostatic alterations with exercise conditioning in NIDDM. Diabetes Care. 1990;13:87–92.

    Article  CAS  PubMed  Google Scholar 

  364. Ceriello A, Esposito K, Ihnat M, Zhang J, Giugliano D. Simultaneous control of hyperglycemia and oxidative stress normalizes enhanced thrombin generation in type 1 diabetes. J Thromb Haemost. 2009;7:1228–30.

    Article  CAS  PubMed  Google Scholar 

  365. Undas A, Wiek I, Stepien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008;31:1590–5.

    Article  CAS  PubMed Central  Google Scholar 

  366. Rosove MH, Frank HJL, Harwing SSL. Plasma beta-thromboglobulin, platelet factor 4, fibrinopeptide A, and other hemostatic functions during improved, short-term glycemic control in diabetes mellitus. Diabetes Care. 1984;7:174–9.

    Article  CAS  Google Scholar 

  367. Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebvre P. Evidence for a hyperglycemia-dependent decrease of antithrombin complex formation in humans. Diabetologia. 1990;33:163–7.

    Article  CAS  PubMed  Google Scholar 

  368. Brownlee M, Vlassara H, Cerami A. Inhibition of heparin-catalyzed antithrombin III activity by non-enzymatic glycosylation: possible role in fibrin deposition in diabetes. Diabetes. 1984;33:532–5.

    Article  CAS  PubMed  Google Scholar 

  369. Vukovich TC, Schernthaner G. Decreased protein C levels in patients with insulin-dependent type I diabetes mellitus. Diabetes. 1986;35:617–9.

    Article  CAS  PubMed  Google Scholar 

  370. Booyse FM, Bruce R, Gianturco SH, Bradley WA. Normal but not hypertriglyceridemic very low-density lipoprotein induces rapid release of tissue plasminogen activator from cultured human umbilical vein endothelial cells. Semin Thromb Hemost. 1988;14:175–9.

    Article  CAS  PubMed  Google Scholar 

  371. Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor 1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis. 1990;10:1067–73.

    Article  CAS  Google Scholar 

  372. Juhan-Vague I, Alessi MC. Regulation of fibrinolysis in the development of atherothrombosis: role of adipose tissue. Thromb Haemost. 1999;82:832–6.

    Article  CAS  PubMed  Google Scholar 

  373. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue. Possible link between visceral fat accumulation and vascular disease. Diabetes. 1997;46:860–7.

    Article  CAS  PubMed  Google Scholar 

  374. Sakamoto TJ, Woodcock-Mitchell K, Marutsuka JJ, Mitchell BE, Sobel FS. TNF-alpha and insulin. Alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes. Am J Phys. 1999;276:C1391–7.

    Article  CAS  Google Scholar 

  375. Okada HJ, Woodcock-Mitchell J, Mitchell T, Sakamoto K, Marutsuka BE, Sobel FS. Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals. Circulation. 1998;97:2175–82.

    Article  CAS  PubMed  Google Scholar 

  376. Feener EP, Northup JM, Aiello LP, King GL. Angiotensin II induces plasminogen activator inhibitor-1 and –2 expression in vascular endothelial and smooth muscle cells. J Clin Invest. 1995;95:1353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Jansson JH, Olofsson BO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. Circulation. 1993;88:2030–4.

    Article  CAS  PubMed  Google Scholar 

  378. Cushman M, Lemaitre RN, Kuller LH, Psaty BM, Macy EM, Sharrett AR, Tracy RP. Fibrinolytic activation markers predict myocardial infarction in the elderly. The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 1999;19:493–8.

    Article  CAS  PubMed  Google Scholar 

  379. Garcia Frade LJ, de la Calle H, Torrado MC, Lara JI, Cuellar L, Garcia AA. Hypofibrinolysis associated with vasculopathy in non-insulin dependent diabetes mellitus. Thromb Res. 1990;59:51–9.

    Article  CAS  PubMed  Google Scholar 

  380. Folsom AR, Aleksic N, Park E, Salomaa V, Juneja H, Wu KK. Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol. 2001;21:611–7.

    Article  CAS  PubMed  Google Scholar 

  381. Gray RP, Patterson DLH, Yudkin JS. Plasminogen activator inhibitor activity in diabetic and nondiabetic survivors of myocardial infarction. Arteriosclerosis. 1993;13:415–20.

    Article  CAS  Google Scholar 

  382. Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA. Platelet plasminogen activator inhibitor 1 in patients with type II diabetes. Diabetes Care. 1994;17:818–23.

    Article  CAS  PubMed  Google Scholar 

  383. Jokl R, Klein RL, Lopes-Virella MF, Colwell JA. Release of platelet plasminogen activator inhibitor 1 in whole blood is increased in patients with type II diabetes. Diabetes Care. 1995;18:1150–5.

    Article  CAS  PubMed  Google Scholar 

  384. Sahli D, Eriksson JW, Boman K, Svensson MK. Tissue plasminogen activator (tPA) activity is a novel and early marker of asymptomatic LEAD in type 2 diabetes. Thromb Res. 2009;123:701–6.

    Article  CAS  Google Scholar 

  385. Brommer EJ, Gevers Leuven JA, Barrett-Bergshoeff MM. Response of fibrinolytic activity and factor VIII-related antigen to stimulation with desmopressin in hyperlipoproteinemia. J Lab Clin Med. 1982;100:105–14.

    CAS  Google Scholar 

  386. Juhan-Vague I, Vague P, Poisson C, Aillaud MF, Mendez C, Collen D. Effect of 24 hours of normoglycemia on tissue-type plasminogen activator plasma levels in insulin-dependent diabetes. Thromb Haemost. 1984;51:97–8.

    Article  CAS  Google Scholar 

  387. Zaman AKMT, Fujii S, Sawa H, Goto D, Tshimori N, Watano K, Kaneko T, Furumoto T, Sugawara T, Sakuma I, Kitabatake A, Sobel BE. Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation. 2001;103:3123–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. Lopes-Virella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes-Virella, M.F., Virella, G. (2023). Diabetes and Atherosclerosis. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics