Skip to main content

Bacteria in Ethanol Fermentation

  • Chapter
  • First Online:
Microbiology of Ethanol Fermentation in Sugarcane Biofuels

Abstract

Bacteria and their metabolic products are carried into the fermentation tanks when the treatment of the sugarcane juice is not efficient. The bacterial contamination is an important issue in the context of bioethanol industry because it causes significant loss of sugar and consequently lower ethanol production, yeast flocculation, and low viability of yeast cells. The group of lactic acid bacteria is the most expressive in terms of abundance and effects caused to the fermentation, especially the genus Lactobacillus. The interactions between bacteria and yeasts present in the fermentation vessel should be highlighted in the context of contaminations, because the interactions involve competition for substrate, metabolite production by both yeast and bacterium, must composition, cell wall structure, and others. In this chapter, the diversity of bacteria, their effects on fermentation, and methods to control bacterial contamination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agtarap, A., Chamberlin, J.W., Pinkerton, M., Steinrauf, L.: The structure of monensic acid, a new biologically active compound. J. Am. Chem. Soc. 89(22), 5737–5739 (1967)

    Article  Google Scholar 

  • Albers, E., Johansson, E., Franzén, C.J., Larsson, C.: Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol. Biofuels. 4(1), 59 (2011)

    Article  Google Scholar 

  • Alcarde, V.E.: Avaliação de parâmetros que afetam a floculação de leveduras e bactérias isoladas de processos industriais de fermentação alcoólica. Thesis, Universidade Estadual de Campinas (2001)

    Google Scholar 

  • Amorim, H.V., Basso, L.C., Lopes, M.L.: Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew, W.M., Kelsall, A.G.D., Kluhspies, C. (eds.) The Alcohol Textbook, pp. 39–46. University Press, Nottingham (2009)

    Google Scholar 

  • Amorim, H.V., Lopes, M.L., Oliveira, J.V.C., Buckeridge, M.S., Goldman, G.H.: Scientific challenges of bioethanol production in Brazil. Appl. Microbiol. Biotechnol. 91, 1267–1275 (2011)

    Article  Google Scholar 

  • Barth, D., Monteiro, A.R.S., Costa, M.M., Virkajarvi, I., Sacon, V., Wilhelmsom, A.: DesinFix TM 135 in fermentation process for bioethanol production. Braz. J. Microbiol. 45(1), 323–325 (2014)

    Article  Google Scholar 

  • Basso, T.O., Gomes, F.S., Lopes, M.L., Amorim, H.V., Eggleston, G., Basso, L.C.: Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek. 105, 169–177 (2014)

    Article  Google Scholar 

  • Bayrock, D.P., Ingledew, W.M.: Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and or acid toxicity? J. Ind. Microbiol. Biotechnol. 31(8), 362–368 (2004)

    Article  Google Scholar 

  • Beckner, M., Ivey, M.L., Phister, T.G.: Microbial contamination of fuel ethanol fermentations. Lett. Appl. Microbiol. 53(4), 387–394 (2011)

    Article  Google Scholar 

  • Bertozzi Silva, J., Sauvageau, D.: Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol. Biofuels. 7(1), 23 (2014)

    Article  Google Scholar 

  • Bischoff, K.M., Liu, S., Leathers, T.D., Worthington, R.E., Rich, J.O.: Modelling bacterial contamination of fuel ethanol fermentation. Biotechnol. Bioeng. 103(1), 117–122 (2009)

    Article  Google Scholar 

  • Bonatelli, M.L., Quecine, M.C., Silva, M.S., Labate, C.A.: Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol. Lett. 364(17), fnx159 (2017)

    Article  Google Scholar 

  • Brexó, R.P., Sant’ana, A.S.: Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? Crit. Rev. Biotechnol. 38(2), 231–244 (2017)

    Article  Google Scholar 

  • Brooijmans, R., Smit, B., Santos, F., van Riel, J., de Vos, W.M., Hugenholtz, J.: Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Factories. 8, 28 (2009)

    Article  Google Scholar 

  • Burtner, C., Murakami, C.J., Kennedy, B.K., Kaeberlein, M.A.: A molecular mechanism of chronological aging in yeast. Cell Cycle. 8, 1256–1270 (2009)

    Article  Google Scholar 

  • Caetano, A.C.G., Madaleno, L.L.: Controle de contaminantes bacterianos na fermentação alcoólica com a aplicação de biocidas naturais. Ciência Tecnologia FATEC-JB. 2(1), 27–37 (2011)

    Google Scholar 

  • Carvalho-Netto, O.V., Carazzolle, M.F., Mofatto, L.S., Teixeira, P.J.P.L., Noronha, M.F., Calderón, L.A.L., Mieczkowkski, P.A., Argueso, J.L., Pereira, G.A.G.: Saccharomyces cerevisiae transcription reprograming due to bacterial contamination during industrial scale bioethanol production. Microb. Cell Factories. 14(13), 1–13 (2015)

    Google Scholar 

  • Case, A.C., Lyon, A.I.L.: Action of polymyxin on some common brewery bacteria. J. Inst. Brew. 62, 477–485 (1956)

    Article  Google Scholar 

  • Ceccato-Antonini, S.R.: Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World J. Microbiol. Biotechnol. 80, 24–34 (2018)

    Google Scholar 

  • Chang, S., Kim, B.H., Shin, P.K.: Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl. Environ. Microbiol. 63(1), 1–6 (1997)

    Article  Google Scholar 

  • Cherubin, R.A.: Efeitos da viabilidade da levedura e da contaminação bacteriana na fermentação alcoólica. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (2003)

    Google Scholar 

  • Condon, S.: Responses of lactic-acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269–280 (1987)

    Article  Google Scholar 

  • Costa, O.Y.A., Souto, B.M., Tupinambá, D.D., Bergmann, J.C., Kyaw, C.M., Kruger, R.H., Barreto, C.C., Quirino, B.F.: Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J. Ind. Microbiol. Biotechnol. 42, 73–84 (2015)

    Article  Google Scholar 

  • Costa, M.A.S., Cerri, B.C., Ceccato-Antonini, S.R.: Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production. Lett. Appl. Microbiol. 66(1), 77–85 (2018)

    Article  Google Scholar 

  • Dellias, M.D.T.F., Borges, C.D., Lopes, M.L., Cruz, S.H., Amorim, H.V., Mui, T.S.: Biofilm formation and antimicrobial sensitivity of Lactobacilli contaminants from sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek. 111, 1631–1644 (2018)

    Article  Google Scholar 

  • Duwat, P., Sourice, S., Cesselin, B., Lamberet, G., Vido, K., Gaudu, P., Le Loir, Y., Violet, F., Loubière, P., Gruss, A.: Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183(15), 4509–4516 (2001)

    Article  Google Scholar 

  • Eggleston, G., Basso, L.C., Amorim, H.V., Paulillo, S.C.L., Basso, T.O.: Mannitol as a sensitive indicator of sugar. Sugar Industry. 132(1), 33–39 (2007)

    Google Scholar 

  • Furtado, M.: Ambiente – Beraca usa ClO2 na fermentação alcoólica (2013). Disponível em: https://www.quimica.com.br/ambiente-beraca-usa-clo2-na-fermentacao-alcoolica. Accessed 22 Mar 2020

  • Gallo, C.R.: Determinação da microbiota bacteriana de mosto e de dornas de fermentação alcoólica. Thesis, Universidade Estadual de Campinas (1990)

    Google Scholar 

  • Garg, P., Park, Y.J., Sharma, D., Wang, T.: Antimicrobial effect of chitosan on the growth of lactic acid bacteria strains known to spoil beer. J. Exp. Microbiol. Immunol. 14, 7–12 (2010)

    Google Scholar 

  • Góis, C.G.M., Lopes-Santos, L., Beranger, J.P.O., Oliveira, A.G., Spago, F.R., Andrade, G.: The control of Lactobacillus sp. by extracellular compound produced by Pseudomonas aeruginosa in the fermentation process of fuel ethanol industry in Brazil. J. Sustain. Bioenergy Syst. 3(3), 194–201 (2013)

    Article  Google Scholar 

  • Gray, P.P., Kazin, A.D.: Antibiotics and the treatment of brewer’s yeast. Wallerstein Lab. Commun. 9, 15–27 (1946)

    Google Scholar 

  • Greetham, D.: Presence of low concentrations of acetic acid improves fermentations using Saccharomyces cerevisiae. J. Bioproc. Biotech. 5(1), 1000192 (2014)

    Google Scholar 

  • Guo, Z.P., Olsson, L.: Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density. FEMS Yeast Res. 16(7) (2016)

    Google Scholar 

  • Hallsworth, J.E.: Ethanol-induced water stress in yeast. J. Ferment. Bioeng. 85(2), 125–137 (1998)

    Article  Google Scholar 

  • Hirayama, S., Furukawa, S., Ogihara, H., Morinaga, Y.: Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11. Biochem. Biophys. Res. Commun. 419, 652–655 (2012)

    Article  Google Scholar 

  • Kalogeropoulos, N., Konteles, S.J., Troullidou, E., Mourtzinos, I., Karathanos, V.T.: Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 116(2), 452–561 (2009)

    Article  Google Scholar 

  • Kandler, O.: Carbohydrate-metabolism in lactic-acid bacteria. Antonie Van Leeuwenhoek. 49(3), 209–224 (1983)

    Article  Google Scholar 

  • Khatibi, P.A., Roach, D.R., Donovan, D.M., Hughes, S.R., Bischoff, K.M.: Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol. Biofuels. 7, 104 (2014)

    Article  Google Scholar 

  • Lechardeur, D., Cesselin, B., Fernandez, A., Lamberet, G., Garrigues, C., Pedersen, M., Gaudu, P., Gruss, A.: Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22, 1–7 (2010)

    Google Scholar 

  • Leite, I.R., Faria, J.R., Marquez, L.D.S., Reis, M.H.M., Resende, M.M., Ribeiro, E.J., Cardoso, V.L.: Evaluation of hop extract as a natural antibacterial agent in contaminated fuel ethanol fermentations. Fuel Process. Technol. 106, 611–618 (2013)

    Article  Google Scholar 

  • Lindahl, L., Genheden, S., Faria-Oliveira, F., Allard, S., Eriksson, L.A., Olsson, L., Bettiga, M.: Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance. Microb. Cell. 5(1), 42–55 (2018)

    Article  Google Scholar 

  • Lino, F.S.O., Bajic, D., Vila, J.C.C., Sánchez, A., Sommer, M.O.A.: Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 12, 1498 (2021)

    Article  Google Scholar 

  • Liu, M., Bischoff, K.M., Gill, J.J., Mire-Criscione, M.D., Berry, J.D., Young, R., Summer, E.J.: Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol. Biofuels. 8, 132 (2015)

    Article  Google Scholar 

  • Lopes, M.L., Paulillo, S.C.L., Godoy, A., Cherubin, R.A., Lorenzi, M.S., Giometti, F.H.C., Bernardino, C.D., Amorim Neto, H.B., Amorim, H.V.: Ethanol production in Brazil: a bridge between science and industry. Braz. J. Microbiol. 47(1), 64–76 (2016)

    Article  Google Scholar 

  • Lowicki, D., Huczyński, A.: Structure and antimicrobial properties of monensin A and its derivatives: summary of the achievements. Biomed. Res. Int. 2013, 742149 (2013)

    Article  Google Scholar 

  • Lucena, B.T.L., Santos, B.M., Moreira, J.L.S., Moreira, A.P.B., Nunes, A.C., Azevedo, V., Miyoshi, A., Thompson, F.L., Morais Jr., M.A.: Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. 10(23), 298–306 (2010)

    Article  Google Scholar 

  • Lucena, B.T.L., Silva, G.G.Z., Santos, B.M., Dias, G.M., Amaral, G.R., Moreira, A.P.B., Morais Jr., M.A., Dutilh, B.E., Edwards, R.A., Balbino, V., Thompson, C.C., Thompson, F.L.: Genome sequences of the ethanol-tolerant Lactobacillus vini strains LMG 23202T and JP7.8.9. J. Bacteriol. 194(11), 3018 (2012)

    Article  Google Scholar 

  • Ludwig, K.M., Oliva-Neto, P., Angelis, D.F.: Quantificação da floculação de S. cerevisiae por bactérias contaminantes da fermentação alcoólica. Cienc. Tecnol. Aliment. 21(1), 63–68 (2001)

    Article  Google Scholar 

  • Maia, N.J.L., Corrêa, J.A.F., Rigotti, R.T., Silva Jr., A.A., Luciano, F.B.: Combination of natural antimicrobials for contamination control in ethanol production. World J. Microbiol. Biotechnol. 35, 158 (2019)

    Article  Google Scholar 

  • Manitchotpisit, P., Bischoff, K.M., Price, N.P.J., Leathers, T.D.: Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants. Curr. Microbiol. 66(5), 443–449 (2013)

    Article  Google Scholar 

  • McFall, S.M., Montville, P.E.: pH mediated regulation of piruvate catabolism in Lactobacillus plantarum chemostat cultures. Indian J. Microbiol. 4(5), 335–340 (1989)

    Article  Google Scholar 

  • Mendonça, A.A., Lucena, B.T.L., Morais, M.M.C., Morais Jr., M.A.: First identification of Tn916-like element in industrial strains of Lactobacillus vini that spread the tet-M resistance gene. FEMS Microbiol. Lett. 363, fnv240 (2016)

    Article  Google Scholar 

  • Mendonça, A.A., Silva, P.K.N., Calazans, T.L.S., Souza, R.B., Pita, W.B., Elztein, C., Morais Jr., M.A.: Lactobacillus vini: mechanistic response to stress by medium acidification. Microbiology. 165, 26–36 (2019)

    Article  Google Scholar 

  • Meneghin, S.P., Reis, F.C., Almeida, P.G., Ceccato-Antonini, S.R.: Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz. J. Microbiol. 39(2), 337–343 (2008)

    Article  Google Scholar 

  • Meneghin, M.C., Reis, V.R., Ceccato-Antonini, S.R.: Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Braz. Arch. Biol. Technol. 53(5), 1043–1050 (2010)

    Article  Google Scholar 

  • Miniac, M.: Use of ionophoretic polyether antibiotics for controlling bacterial growth in alcoholic fermentation. US Patent Application Publication, number 5.888.788 (1999)

    Google Scholar 

  • Mira, N.P., Teixeira, M.C., Sá-Correia, I.: Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS J. Integr. Biol. 14(5), 525–540 (2010)

    Article  Google Scholar 

  • Murphree, C.A., Li, Q., Heist, P.E., Moe, L.A.: A multiple antibiotic resistant Enterobacter cloacae strain isolated from a bioethanol fermentation facility. Microbes Environ. 29(3), 322–325 (2014)

    Article  Google Scholar 

  • Muthaiyan, A., Limayem, A., Ricke, S.C.: Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog. Energy Combust. Sci. 37(3), 351–370 (2011)

    Article  Google Scholar 

  • Mutton, M.J.R., Oliveira Filho, J.H., Costa, G.H.G., Roviero, J.P., Freita, L.A.: Green and brown propolis: efficient natural biocides for the control of bacterial contamination of alcoholic fermentation of distilled beverage. Food Sci. Technol. 34(4), 767–772 (2014)

    Article  Google Scholar 

  • Narendranath, N.V., Hynes, S.H., Thomas, K.C., Ingledew, W.M.: Effects of Lactobacilli on yeast-catalyzed ethanol fermentations. Appl. Environ. Microbiol. 63(11), 4158–4163 (1997)

    Article  Google Scholar 

  • Narendranath, N.V., Thomas, K.C., Ingledew, W.M.: Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26, 171–177 (2001a)

    Article  Google Scholar 

  • Narendranath, N.V., Thomas, K.C., Ingledew, W.M.: Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J. Am. Soc. Brew. Chem. 59(4), 187–194 (2001b)

    Google Scholar 

  • Nevoigt, E., Stahl, U.: Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231–241 (1997)

    Article  Google Scholar 

  • Nobre, T.P., Horii, J., Alcarde, A.R.: Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica. Cienc. Tecnol. Aliment. 27(1), 20–25 (2007)

    Article  Google Scholar 

  • Novik, G., Meerovskaya, O., Savich, V.: Waste degradation and utilization by lactic acid bacteria: use of lactic acid bacteria in production of food additives, bioenergy and biogas. In: Karunaratne, D.N., Pamunuwa, G. (eds.) Food Additives, pp. 105–146. InTechOpen, Rijeka (2017)

    Google Scholar 

  • Oliva-Neto, P., Yokoya, F.: Evaluation of bacterial contamination in a fed-batch fermentation process. World J. Microbiol. Biotechnol. 10(6), 697–699 (1994)

    Article  Google Scholar 

  • Oliva-Neto, P., Yokoya, F.: Effect of 3,4,4′-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation. Bioresour. Technol. 63(1), 17–21 (1998)

    Article  Google Scholar 

  • Oliva-Neto, P., Ferreira, M.A., Yokoya, F.: Screening for yeast with antibacterial properties from an ethanol distillery. Bioresour. Technol. 92(1), 1–6 (2004)

    Article  Google Scholar 

  • Oliva-Neto, P., Lima, F.A., Silva, K.C., Silva, D.F., Carvalho, A.F.A., Santos, C.: Chemical inhibition of the contaminant Lactobacillus fermentum from distilleries producing fuel bioethanol. Braz. Arch. Biol. Technol. 57(3), 441–447 (2014)

    Article  Google Scholar 

  • Oliveira, A.J., Gallo, C.R., Alcarde, V.E.: Efeito da temperatura e pH na germinação de esporos de bactérias em processos de fermentação alcoólica. Álcool e Açúcar. 15(80), 32–35 (1995)

    Google Scholar 

  • Pampulha, M.E., Loureiro-Dias, M.C.: Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 184(1), 69–72 (2000)

    Article  Google Scholar 

  • Pan, C., Rezaei, H., Soor, A.: Chitosan disrupts membrane permeability of lactic acid bacteria. J. Exp. Microbiol. Immunol. 15, 7–14 (2011)

    Google Scholar 

  • Passoth, V., Blomqvist, J., Schnurer, J.: Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl. Environ. Microbiol. 73(13), 4354–4356 (2007)

    Article  Google Scholar 

  • Peng, J., Zhang, L., Gu, Z.H., Ding, Z.Y., Shi, G.Y.: The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Lett. Appl. Microbiol. 55(2), 128–134 (2012)

    Article  Google Scholar 

  • Pretzer, G., Snel, J., Molenaar, D., Wiersma, A., Bron, P.A., Lambert, J., de Vos, W.M., van der Meer, R., Smits, M.A., Kleerebezem, M.: Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187(17), 6128–6136 (2005)

    Article  Google Scholar 

  • Queiroz, L.L., Costa, M.S., Pereira, A.A., Avila, M.P., Costa, P.S., Nascimento, M.A., Lacorte, G.A.: Dynamics of microbial contaminants is driven by selection during ethanol production. Braz. J. Microbiol. 51, 303–312 (2020)

    Article  Google Scholar 

  • Rich, J.O., Bischoff, K.M., Leathers, T.D., Anderson, A.M., Liu, S., Skory, C.D.: Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria – an alternative to antibiotic treatment. Bioresour. Technol. 247, 357–362 (2018)

    Article  Google Scholar 

  • Rodas, A.M., Chenoll, E., Macia, M.C., Ferrer, S., Pardo, I., Aznar, R.: Lactobacillus vinis p. nov., a wine lactic acid bacterium homofermentative for pentoses. Int. J. Syst. Evol. Microbiol. 56, 513–517 (2006)

    Article  Google Scholar 

  • Rosales, S.Y.R.: Contaminantes bacterianos da fermentação etanólica: isolamento em meios diferenciais, identificação e avaliação de desinfetantes. Thesis, Universidade Estadual Paulista (1989)

    Google Scholar 

  • Shirahigue, L.D., Ceccato-Antonini, S.R.: Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciência Rural. 50(4), e20190857 (2020)

    Article  Google Scholar 

  • Silva Sabo, S., Vitolo, M., González, J.M.D., Oliveira, R.P.S.: Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 64, 527–536 (2014)

    Article  Google Scholar 

  • Silva, R.S.S., Oliveira, P.A., Silva, E.R.S., Cardoso, C.A.L., Ernandes, J.R., Batistote, M.: Effect of acid treatment in alcoholic fermentation. Ciência e Natura. 37(1), 52–56 (2015)

    Article  Google Scholar 

  • Silva-Neto, J.M., Covre, E.A., Rosa, B.C., Ceccato-Antonini, S.R.: Can ethanol replace partially or fully sulfuric acid in the acid wash step of bioethanol production to fight contamination by Lactobacillus fermentum? Braz. J. Chem. Eng. 37(2), 323–332 (2020)

    Article  Google Scholar 

  • Skinner-Nemec, K.A., Nichols, N.N., Leathers, T.D.: Biofilm formation by bacterial contaminants of fuel ethanol production. Biotechnol. Lett. 29(3), 379–383 (2007)

    Article  Google Scholar 

  • Soares, E.V.: Flocculation in Saccharomyces cerevisiae: a review. J. Appl. Microbiol. 110(1), 1–18 (2010)

    Article  MathSciNet  Google Scholar 

  • Souza, M.A.C.E., Mutton, M.J.R.: Floculação de leveduras por Lactobacillus fermentum em processos industriais de fermentação alcoólica avaliada por técnica fotométrica. Ciência e Agrotecnologia. 28(4), 893–898 (2004)

    Article  Google Scholar 

  • Souza, R.B., Santos, B.M., Souza, R.F.R., Silva, P.K.N., Lucena, B.T.L., Morais Jr., M.A.: The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. J. Ind. Microbiol. Biotechnol. 39(11), 1654–1650 (2012)

    Article  Google Scholar 

  • Souza, R.S.C., Okura, V.K., Armanhi, J.S.L., Jorrin, B., Lozano, N., Silva, M.J., González-Guerrero, M., Araújo, L.M., Verza, N.C., Bagheri, H.C., Imperial, J., Arruda, P.: Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016)

    Article  Google Scholar 

  • Stewart, G.G.: Yeast flocculation – sedimentation and flotation. Fermentation. 4(2), 28 (2018)

    Article  Google Scholar 

  • Stratford, M.: Yeast flocculation: Reconciliation of physiological and genetic viewpoints. Yeast. 8(1), 25–38 (1992)

    Article  Google Scholar 

  • Stroppa, C.T., Andrietta, M.G.S., Andrietta, S.R., Steckelberg, C., Serra, G.E.: Use of penicillin and monensin to control bacterial contamination of Brazilian alcohol fermentations. Int. Sugar J. 102(1214), 78–82 (2000)

    Google Scholar 

  • Tanganini, I.C., Shirahigue, L.D., Altenhofen da Silva, M., Francisco, K.R., Ceccato-Antonini, S.R.: Bioprocessing of shrimp wastes to obtain chitosan and its antimicrobial potential in the context of ethanolic fermentation against bacterial contamination. 3 Biotech. 10, 135 (2020)

    Article  Google Scholar 

  • Tiukova, I., Eberhard, T., Passoth, V.: Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Biotechnol. Appl. Biochem. 61(1), 40–44 (2014)

    Article  Google Scholar 

  • Viegas, E.K.D.: Propriedade antibacteriana da própolis verde sobre bactérias contaminantes da fermentação etanólica. Dissertation, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (2011)

    Google Scholar 

  • von Weymarn, N., Hujanen, M., Leisola, M.: Production of D-mannitol by hetero-fermentative lactic acid bacteria. Process Biochem. 37, 1207–1213 (2002)

    Article  Google Scholar 

  • Wisselink, H.W., Weusthuis, R.A., Eggink, G., Hugenholtz, J., Grobben, G.J.: Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12, 151–161 (2002)

    Article  Google Scholar 

  • Worley-Morse, T.O., Deshusses, M.A., Gunsch, C.K.: Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Biotechnol. Bioeng. 112, 1544–1553 (2015)

    Article  Google Scholar 

  • Yamasaki-Yashiki, S., Sawada, H., Kino-Oka, M., Katakura, Y.: Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan. Biosci. Microbiota Food Health. 36(1), 17–25 (2017)

    Article  Google Scholar 

  • Yokoya, F., Oliva-Neto, P.: Características da floculação de leveduras por Lactobacillus fermentum. Rev. Microbiol. 22(1), 12–16 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceccato-Antonini, S.R. (2022). Bacteria in Ethanol Fermentation. In: Microbiology of Ethanol Fermentation in Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-031-12292-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12292-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12291-0

  • Online ISBN: 978-3-031-12292-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics