Skip to main content
Log in

pH-mediated regulation of pyruvate catabolism inLactobacillus plantarum chemostat cultures

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

While the ability of lactobacilli to catabolize pyruvate to a variety of industrially important catabolites is well known, the mechanisms which regulate pyruvate distribution among alternative catabolic pathways is unclear. This paper demonstrates that environmental acidity regulates the catabolic activities ofLactobacillus plantarum cells in chemostat cultures.L. plantarum cells grown in medium containing 100 mM exogenous pyruvate, diverted pyruvate away from lactate to acetoin. Pyruvate uptake and acetoin generation increased under acidic conditions; on a molar basis, pyruvate utilization increased twice as fast as acetoin production, reflecting the 2∶1 stoichiometry of pyruvate incorporation into acetoin. Lactate production increased under alkaline conditions when glucose was fermented to provide endogenous pyruvate. Acetate was formed only at pH 7.5 and 8.0, although acetoin production decreased at elevated pH values. These data indicate thatL. plantarum adjusts to changes in environmental pH by altering its distribution of pyruvate among various catabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Branen, A.L. and T.W. Keenan. 1970. Diacetyl, acetoin and 2.3-butanediol production byLactobacillus casei. J. Dairy Sci. 53:632.

    Google Scholar 

  2. Cogan, T.M., M. O'Dowd and D. Mellenick. 1981. Effect of pH and sugar on acetoin production from citrate byLeuconostoc cremoris. Appl. Environ. Microbiol. 41:1–8.

    Google Scholar 

  3. Cogan, T.M., R.J. Fitzgerald and S. Doonan. 1984. Acetolactate synthase ofLeuconostoc lactis and its regulation of acetion production. J. Dairy Res. 51:597–604.

    Google Scholar 

  4. Craig, J.A. and E.E. Snell. 1951 The comparative activities of pantethine, pantothenic acid and coenzyme A for various microorganisms. J. Bacteriol. 61:238–291.

    Google Scholar 

  5. de Cardenas, J.L.B., O.V. Ledesma and G. Oliver. 1987.Lactobacillus casei subsp.rhamnosus ATCC 7469. Current Microbiol. 15:259–264.

    Google Scholar 

  6. Dennis, D. and N.O. Kaplan. 1960.d-andl-lactic acid dehydrogenases inLactobacillus plantarum. J. Biol. Chem. 235: 810–818.

    PubMed  Google Scholar 

  7. de Vries, W., W.M.C. Kapteyn, E.G. Van der Beek and Stouthamer. 1970. Molar growth yields and fermentation balances ofLactobacillus casei L3 in batch cultures and in continuous cultures. J. Gen. Microbiol. 63:333–345.

    PubMed  Google Scholar 

  8. Doelle, W.H. 1971. Nicotinamide adenine dinucleotide-dependent and-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria. J. Bacteriol. 108:1284–1289.

    PubMed  Google Scholar 

  9. El-Gendy, S.M., H. Abdel-Galil, Y. Shanin and F.Z. Heganzi. 1983. Acetoin and diacetyl production by homo-and heterofermentative lactic acid bacteria. J. Food Protect. 46: 420–425.

    Google Scholar 

  10. El-Gendy, S.M., H. Abdel-Gahil and F. Z. Hegazi. 1983. Acetoin and diacetyl production byLactobacillus plantarum able to use citrate. J. Food Protect. 46:503–505.

    Google Scholar 

  11. Fryer, F.F. 1970. Utilization of citrate by lactobacilli isolated from dairy products. J. Dairy Res. 37:9–11.

    Google Scholar 

  12. Garvie, E.I. 1980. Bacterial lactate dehydrogenases. Microbiol. Rev. 44:106–139.

    PubMed  Google Scholar 

  13. Gunsalus, I.C. 1958. Energy metabolism of lactic acid bacteria. 4th Int. Cong. Biochem., Vienna 13:444.

    Google Scholar 

  14. Hensel R. U. Mayr, H. Fujiki and O. Kandler. 1977. Comparative studies of lactate dehydrogenases in lactic acid bacteria. Eur. J. Biochem. 880:83–92.

    Google Scholar 

  15. Hibbert, F., S.A. Kyrtopoulos and D.P.N. Satchell. 1971. Kinetic studies with phosphotransacetylase. Biochim. Biophys. Acta 242:39–54.

    PubMed  Google Scholar 

  16. Hickey, M.W., A.J. Hillier and G.R. Jago. 1983. Metabolism of pyruvate and citrate in lactobacilli. Aust. J. Biol. Sci. 36: 487–496.

    PubMed  Google Scholar 

  17. Ingraham, J.L., O. Maaloe and F.C. Nerdhadt. 1983. Polymerization, Biosynthesis, Fueling and Transport. Chapt. 3 In: Growth of the Bacterial Cell, pp. 136–150. Sinauer Associates, Inc., publishers. Sunderland, Mass.

    Google Scholar 

  18. Kandler, O. and N. Weiss, 1984. Regular, nonsporing, Gram-positive rods. Section 14 In:Bergey's Manual of Systematic Bacteriology, Vol. 2. (P.H.A. Sneath, ed.), Williams and Wilkens, Baltimore, MD.

    Google Scholar 

  19. Koch, A.L. 1981. Growth measurement. Ch. 11. In: (P. Gerhardt, R.G.E. Murray, R.N. Costilov, W.E. Nester, W.A. Wood, N.R. Krieg and G.B. Phillips eds.), Manual of Methods for General Bacteriology, p. 196. ASM. Washington, DC.

    Google Scholar 

  20. Lindmark D.G., P. Paolella and N.P. Wood, 1969. The pyruvate formate-lyase system ofStreptococci faecalis. J. Biol. Chem. 244:3605–3612.

    PubMed  Google Scholar 

  21. Mizushima, S. and K. Kitahara. 1962 Purification and properties of lactic dehydration ofLactobacillus casei. J. Gen. App. Microbiol. 8:130–141.

    Google Scholar 

  22. Montville, T.J., M.E. Meyer and A.M.H. Hsu. 1987. Influence of carbon substrate on lactic acid, cell mass and diacetylacetoin production inLactobacillus plantarum. J. Food Protect. 50:42–46.

    Google Scholar 

  23. Montville, T.J., A.H.M. Hsu and M.E. Meyer. 1987. Highefficiency of pyruvate to acetoin byLactobacillus plantarum during pH-controlled and fed-batch fermentations. Appl. Environ. Microbiol. 53:1798–1802.

    Google Scholar 

  24. Montville, T.J. 1987. Continuous culture: theory and applications. In: (Montville, T.J., ed.), Food Microbiology Vol. 2: New and Emerging Technologies. p. 165–186, CRC Press, Boca Raton, GL.

    Google Scholar 

  25. Montville, T.J., A.H.M. Hsu, M.E. Meyer and G.T.C. Huang. 1987. High pressure liquid chromatography and wide-bore capillary gas chromatography methods for acetoin and diacetyl. J. Microbiol. Meth. 7:1–8.

    Google Scholar 

  26. Otto, R., B. ten Brinks, H. Veldkamp and W.N. Konings, 1983. The relation between growth rate and electrochemical proton gradient ofStreptococci cremoris. FEMS Microbiol. Lett. 16:69–74.

    Google Scholar 

  27. Rhee, S.K. and M.Y. Pack. 1980. Effect of environmental pH on fermentation balance ofLactobacillus bulgaricus. J. Bacteriol. 144:217–221.

    PubMed  Google Scholar 

  28. Satchell, D.P.N. and G.F. White. 1970. Kinetic studies with acetate kinase. Biochim. Biophys. Acta 212:248–256.

    PubMed  Google Scholar 

  29. Smart, J.B. and T.D. Thomas. 1987. Effect of oxygen on lactose metabolism in lactic streptococci. App. Environ. Microbiol. 53:533–541.

    Google Scholar 

  30. ten Brinks, B. and W.N. Konings. 1982. Electrochemical proton gradient and lactate concentration gradient inStreptocossus cremoris cells grown in batch culture. J. Bacteriol. 152: 682–686.

    PubMed  Google Scholar 

  31. ten Brinks, B., R. Otto, U.P. Hansen and W.N. Konings, 1985. Energy recycling by lactate efflux in growing and nongrowing cells ofStreptococci cremoris. J. Bacteriol. 162:383–390.

    PubMed  Google Scholar 

  32. Thomas, T.D., D.C. Ellwood and U.M.C. Longyear. 1979. Change from homo-to heterofermentation byStreptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138:109–117.

    PubMed  Google Scholar 

  33. Thomas, T.D. and K.W. Turner. 1981. Carbohydrate fermentation byStreptococcus cremoris andStreptococcus lactis growing in agar gels. Appl. Environ. Microbiol. 41:1289–1294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFall, S.M., Montville, T.J. pH-mediated regulation of pyruvate catabolism inLactobacillus plantarum chemostat cultures. Journal of Industrial Microbiology 4, 335–340 (1989). https://doi.org/10.1007/BF01569535

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569535

Key words

Navigation