Skip to main content

FoI and Age-Dependence

  • Chapter
  • First Online:
Epidemics

Part of the book series: Use R! ((USE R))

  • 1139 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The theoretical FoI is model specific, so more complicated models may have more complicated FoIs. The FoI for the Ebola SEIHFR model of Sect. 3.10, for example, is given by rate ① in Fig. 3.9.

  2. 2.

    Liu et al. (1986) proposed that spatial clustering can be modeled by a transmission term βS p I qN, with p and q between zero and one.

  3. 3.

    The notion of a critical host density is discussed in more detail in Sect. 10.7.

  4. 4.

    A thin-plate spline is a spline-based technique that produces smooth surfaces in 2 (or higher) dimensions (Wood, 2003).

  5. 5.

    Recall that the with(as.list(…)) allows evaluation of the equations using the definitions in the parameters vector and % ∗ % denotes matrix multiplication.

  6. 6.

    The tiny non-zero fraction of initials in the R group in the code is because integrating the model in log-coordinates for numerical stability requires non-zero state variables, so \(\log (0)=-\infty \) would break the numerical integrator.

  7. 7.

    This is another unfortunate case of notation conventions in different fields pertinent to infectious disease dynamics that adds confusion to the Greek alphabet soup; this text generally adheres to mathematical epidemiology conventions for which α is commonly used for rate of infection-induced mortality, but in mathematical demography α ij conventionally refers to the i’th row and j’th column of the Leslie matrix.

References

  • Arias, E., Rostron, B. L., & Tejada-Vera, B. (2010). National vital statistics reports. National Vital Statistics Reports, 58(10).

    Google Scholar 

  • Bjørnstad, O. N., Finkenstadt, B. F., & Grenfell, B. T. (2002a). Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series sir model. Ecological Monographs, 72(2), 169–184.

    Article  Google Scholar 

  • Bjørnstad, O. N., & Viboud, C. (2016). Timing and periodicity of influenza epidemics. Proceedings of the National Academy of Sciences, 201616052.

    Google Scholar 

  • Bolker, B. M., & Grenfell, B. T. (1993). Chaos and biological complexity in measles dynamics. Proceedings of the Royal Society of London B, 251(1330), 75–81.

    Article  Google Scholar 

  • Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd edn). Sinauer Associates.

    Google Scholar 

  • Chowell, G., Echevarría-Zuno, S., Viboud, C., Simonsen, L., Tamerius, J., Miller, M. A., & Borja-Aburto, V. H. (2011). Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Medicine, 8(5).

    Google Scholar 

  • De Castro, F., & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology Letters, 8(1), 117–126.

    Article  Google Scholar 

  • de Jong, M., Diekmann, O., & Heesterbeek, H. (1995). How does transmission of infection depend on population size? In Mollison, D., (Ed.), Epidemic models: Their structure and relation to data (pp. 84–94). Cambridge University Press.

    Google Scholar 

  • Delatte, H., Gimonneau, G., Triboire, A., & Fontenille, D. (2009). Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), 33–41.

    Article  Google Scholar 

  • Dowdle, W. R. (1999). Influenza A virus recycling revisited. Bulletin of the World Health Organization, 77(10), 820.

    Google Scholar 

  • Engen, S., Tian, H., Yang, R., Bjørnstad, O. N., Whittington, J. D., & Stenseth, N. C. (2021). The ecological dynamics of the coronavirus epidemics during transmission from outside sources when R0 is successfully managed below one. Royal Society Open Science, 8(6), 202234.

    Article  Google Scholar 

  • Ferrari, M. J., Bansal, S., Meyers, L. A., & Bjørnstad, O. N. (2006a). Network frailty and the geometry of herd immunity. Proceedings of the Royal Society of London B, 273(1602), 2743–2748.

    Google Scholar 

  • Ferrari, M. J., Perkins, S. E., Pomeroy, L. W., & Bjørnstad, O. N. (2011). Pathogens, social networks, and the paradox of transmission scaling. Interdisciplinary Perspectives on Infectious Diseases, 2011.

    Google Scholar 

  • Gog, J. R., Ballesteros, S., Viboud, C., Simonsen, L., Bjornstad, O. N., Shaman, J., Chao, D. L., Khan, F., & Grenfell, B. T. (2014). Spatial transmission of 2009 pandemic influenza in the US. PLoS Computational Biology, 10(6), e1003635.

    Article  Google Scholar 

  • Grais, R. F., Dubray, C., Gerstl, S., Guthmann, J. P., Djibo, A., Nargaye, K. D., Coker, J., Alberti, K. P., Cochet, A., Ihekweazu, C., et al. (2007). Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS Medicine, 4(1), e16.

    Article  Google Scholar 

  • Grenfell, B. T., & Anderson, R. M. (1989). Pertussis in England and Wales: An investigation of transmission dynamics and control by mass vaccination. Proceedings of the Royal Society B, 236(1284), 213–252.

    Google Scholar 

  • Lavine, J. S., Bjornstad, O. N., & Antia, R. (2021). Immunological characteristics govern the transition of COVID-19 to endemicity. Science, 371(6530), 741–745.

    Article  Google Scholar 

  • Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33(3), 183–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, R., Bjørnstad, O. N., & Stenseth, N. C. (2021a). Switching vaccination among target groups to achieve improved long-lasting benefits. Royal Society Open Science, 8(6), 210292.

    Article  Google Scholar 

  • Li, R., Metcalf, C. J. E., Stenseth, N. C., & Bjørnstad, O. N. (2021b). A general model for the demographic signatures of the transition from pandemic emergence to endemicity. Science Advances, 7(33), eabf9040.

    Google Scholar 

  • Liu, W.-M., Levin, S. A., & Iwasa, Y. (1986). Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. Journal of Mathematical Biology, 23(2), 187–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalf, C. J. E., & Barrett, A. (2016). Invasion Dynamics of Teratogenic Infections in Light of rubella Control: Implications for Zika Virus. PLoS Currents, 8.

    Google Scholar 

  • Miller, C. L., & Fletcher, W. (1976). Severity of notified whooping cough. British Medical Journal, 1(6002), 117–119.

    Article  Google Scholar 

  • Morens, D. M., & Fauci, A. S. (2007). The 1918 influenza pandemic: Insights for the 21st century. The Journal of Infectious Diseases, 195(7), 1018–1028.

    Article  Google Scholar 

  • Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G. S., Wallinga, J., et al. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 5(3), e74.

    Article  Google Scholar 

  • Roberts, M., & Heesterbeek, H. (1993). Bluff your way in epidemic models. Trends in Microbiology, 1(9), 343–348.

    Article  Google Scholar 

  • Schenzle, D. (1984). An age-structured model of pre-and post-vaccination measles transmission. Mathematical Medicine and Biology A, 1(2), 169–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Simonsen, L., Clarke, M. J., Schonberger, L. B., Arden, N. H., Cox, N. J., & Fukuda, K. (1998). Pandemic versus epidemic influenza mortality: A pattern of changing age distribution. Journal of Infectious Diseases, 178(1), 53–60.

    Article  Google Scholar 

  • Smith, G. J., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J., Bhatt, S., et al. (2009a). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 459(7250), 1122–1125.

    Article  Google Scholar 

  • Smith, M. J., Telfer, S., Kallio, E. R., Burthe, S., Cook, A. R., Lambin, X., & Begon, M. (2009b). Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences, 106(19), 7905–7909.

    Article  Google Scholar 

  • Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G., Thompson, H., Walker, P. G., Fu, H., et al. (2020). Estimates of the severity of coronavirus disease 2019: A model-based analysis. The Lancet Infectious Diseases, 20(6), 669–677.

    Article  Google Scholar 

  • Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.-M., & Van Ranst, M. (2005). Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. Journal of Virology, 79(3), 1595–1604.

    Article  Google Scholar 

  • Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society B, 65(1), 95–114.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjørnstad, O. (2023). FoI and Age-Dependence. In: Epidemics. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-031-12056-5_4

Download citation

Publish with us

Policies and ethics