Skip to main content

IgA Nephropathy

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 1144 Accesses

Abstract

IgA nephropathy (IgAN) is identified by the prevalence of immunoglobulin A (IgA) in glomerular deposits. IgAN is the commonest glomerular disease in children and adolescents who undergo renal biopsy because of isolated microscopic hematuria or hematuria with non-nephrotic proteinuria. Its prevalence varies in different reports, mostly due to the variable criteria for performing renal biopsy in young subjects. The pathogenesis of IgAN is due to abnormal production of galactose-deficient IgA1 (Gd-IgA1), autoantibody immune response, and formation of circulating immune complexes that are eventually deposited in the glomeruli, leading to complement and inflammatory mediator activation and glomerular injury. The pathologic lesions found at renal biopsy are highly variable, from minimal mesangial proliferation to severe inflammatory changes with crescent formation. According to the Oxford clinical-pathological classification, four lesions (mesangial hypercellularity, endocapillary hypercellularity, segmental glomerulosclerosis and tubular atrophy/interstitial fibrosis; “MEST”) were predictive of outcome independent of clinical assessment. The value of crescents (C) was detected examining a larger cohort. IgAN rarely progresses to kidney failure in childhood, but typically occurs after many years, leading to kidney failure after reaching adulthood. Detecting IgAN at the beginning of its natural history in childhood may offer an important opportunity for early treatment of the nephritis and its complications, with benefits for these patients during childhood, and perhaps more importantly, during adulthood. For these reasons, interest has focused on individual risk prediction in children with IgAN. Clinical data and MEST-C scores may allow identification of potentially progressive cases. Presently, proteinuria >0.5 g/day/1.73 m2 represents the most relevant risk for disease progression. Kidney Disease Improving Global Outcome (KDIGO) suggests treating children with IgAN and persistent proteinuria >0.5 g/1.73 m2/day, with renin-angiotensin system (RAS) inhibitors and, if proteinuria persists despite 3–6 months of this treatment, glucocorticoids should be considered in children as well as in adults. The early initiation of more aggressive therapy with corticosteroids was successful in pediatric cases with active histologic lesions, including in children with severe mesangial proliferation and endocapillary or extracapillary acute lesions. New promising therapeutic approaches are under evaluation and will hopefully modify the long-term prognosis of children with IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris). 1968;74(9):694–5.

    Google Scholar 

  2. Coppo R, Amore A, Hogg R, Emancipator S. Idiopathic nephropathy with IgA deposits. Pediatr Nephrol. 2000;15(1–2):139–50.

    Article  CAS  PubMed  Google Scholar 

  3. D’Amico G. Idiopathic IgA mesangial nephropathy. Nephron. 1985;41:1–13.

    Google Scholar 

  4. Sugiyama H, Yokoyama H, Sato H, Saito T, Kohda Y, Nishi S, et al. Japan Renal Biopsy Registry and Japan Kidney Disease Registry: committee report for 2009 and 2010. Clin Exp Nephrol. 2013;17(2):155–73.

    Article  PubMed  Google Scholar 

  5. Cho BS, Hahn WH, Il CH, Lim I, Ko CW, Kim SY, et al. A nationwide study of mass urine screening tests on Korean school children and implications for chronic kidney disease management. Clin Exp Nephrol. 2013;17(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  6. Coppo R. Pediatric IgA nephropathy in Europe. Kidney Dis. 2019;5:182–8.

    Article  Google Scholar 

  7. Coppo R, Robert T. IgA nephropathy in children and in adults: two separate entities or the same disease? J Nephrol. 2020;33:1219–29.

    Article  PubMed  Google Scholar 

  8. Shibano T, Takagi N, Maekawa K, Mae H, Hattori M, Takeshima Y, et al. Epidemiological survey and clinical investigation of pediatric IgA nephropathy. Clin Exp Nephrol. 2016;20(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  9. Schena FP, IN. Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol. 2018;38:435–42.

    Article  PubMed  Google Scholar 

  10. CM Zink SEJRUHHGJFGS. Trends of renal diseases in Germany: review of a regional renal biopsy database from 1990 to 2013. Clin Kidney J. 2019;12:795–800.

    Article  Google Scholar 

  11. Su S, Yu J, Wang Y, Wang Y, Li J, Xu Z. Clinicopathologic correlations of renal biopsy findings from northeast China A 10-year retrospective study. Medicine (Baltimore). 2019;98(23):e15880.

    Article  PubMed  Google Scholar 

  12. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8(6):e1002765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan P, Song J, Chen Q, Cheng X, Liu X, Zou C, et al. The influence of environmental factors on clinical pathological changes of patients with immunoglobulin A nephropathy from different areas of China. Ren Fail. 2018;40(1):597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008;19(5):1008–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 2011;80(1):79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri GM, et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet. 2000;26(3):354–7.

    Article  CAS  PubMed  Google Scholar 

  17. Neugut YD, Kiryluk K. Genetic determinants of IgA nephropathy: western perspective. Semin Nephrol. 2018;38:443–54.

    Article  CAS  PubMed  Google Scholar 

  18. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie J, Kiryluk K, Li Y, Mladkova N, Zhu L, Hou P, et al. Fine mapping implicates a deletion of CFHR1 and CFHR3 in protection from IgA nephropathy in Han Chinese. J Am Soc Nephrol. 2016;27:3187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tortajada A, Gutiérrez E, Goicoechea de Jorge E, Anter J, Segarra A, Espinosa M, et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017;92(4):953–63.

    Article  CAS  PubMed  Google Scholar 

  21. Tortajada A, Gutierrez E, Pickering MC, Praga Terente M, Medjeral-Thomas N. The role of complement in IgA nephropathy. Mol Immunol. 2019;114:123–32.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol. 2015;26(5):1195–204.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, Toh KY, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. 2015;6:7270.

    Article  CAS  PubMed  Google Scholar 

  24. Magistroni R, D’Agati VD, Appel GB, Kiryluk K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015;88:974–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou X, Tsoi LC, Hu Y, Patrick MT, He K, Berthier CC, et al. Exome chip analyses and genetic risk for IgA nephropathy among Han Chinese. Clin J Am Soc Nephrol 2021;16:CJN.06910520.

    Google Scholar 

  26. Hiki Y, Tanaka A, Kokubo T, Iwase H, Nishikido J, Hotta K, et al. Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Nephrol. 1998;9(4):577–82.

    Article  CAS  PubMed  Google Scholar 

  27. Allen AC, Bailey EM, Brenchley PEC, Buck KS, Barratt J, Feehally J. Mesangial Iga1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001;60(3):969–73.

    Article  CAS  PubMed  Google Scholar 

  28. Novak J, Barratt J, Julian BA, Renfrow MB. Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol. 2018;38:461–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki H, Moldoveanu Z, Hall S, Brown R, Julian BA, Wyatt RJ, et al. IgA nephropathy: characterization of IgG antibodies specific for galactose-deficient IgA1. Contrib Nephrol. 2007;157:129–33.

    CAS  PubMed  Google Scholar 

  30. Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, et al. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of iga nephropathy. Kidney Blood Press Res. 2008;31:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raska M, Moldoveanu Z, Suzuki H, Brown R, Kulhavy R, Andrasi J, et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-Sialyltransferase in IgA1-producing Cells. J Mol Biol. 2007;369(1):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coppo R, Amore A, Gianoglio B, Porcellini MG, Peruzzi L, Gusmano R, et al. Macromolecular IgA and abnormal IgA reactivity in sera from children with IgA nephropathy. Clin Nephrol. 1995;43(1):1–13.

    CAS  PubMed  Google Scholar 

  33. Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate. Electrophoresis. 1999;10(8):1763–71.

    CAS  Google Scholar 

  34. Sun Q, Zhang Z, Zhang H, Liu X. Aberrant IgA1 glycosylation in iga nephropathy: a systematic review. PLoS ONE 2016;11:e0166700.

    Google Scholar 

  35. Allen AC, Topham PS, Harper SJ, Feehally J. Leucocyte β1,3 galactosyltransferase activity in IgA nephropathy. Nephrol Dial Transplant. 1997;12(4):701–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J Am Soc Nephrol. 2017;28(7):2158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 2020;21(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serino G, Sallustio F, Cox SN, Pesce F, Schena FP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 2012;23(5):814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119(6):1668–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012;23(9):1579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, et al. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One. 2018;13(1):e0190967.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moldoveanu Z, Suzuki H, Reily C, Satake K, Novak L, Xu N, et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun. 2021;118:102593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maixnerova D, Ling C, Hall S, Reily C, Brown R, Neprasova M, et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One. 2019;14(2):e0212254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–803.

    Google Scholar 

  46. Rizk DV, Saha MK, Hall S, Novak L, Brown R, Huang ZQ, et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol. 2019;30(10):2017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellur SS, Troyanov S, Cook HT, Roberts ISD. Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant. 2011;26(8):2533–6.

    Article  PubMed  Google Scholar 

  48. Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, et al. The origin and activities of IgA1-containing immune complexes in IGA nephropathy. Front Immunol. 2016;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Monteiro RC. Recent advances in the physiopathology of IgA nephropathy. Nephrologie et Therapeutique. 2018;14:S1–8.

    PubMed  Google Scholar 

  50. Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PHM, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med. 2012;209(4):793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai KN, Leung JCK, Chan LYY, Saleem MA, Mathieson PW, Tam KY, et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant. 2009;24(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  52. Trimarchi H, Coppo R. Podocytopathy in the mesangial proliferative immunoglobulin A nephropathy: new insights into the mechanisms of damage and progression. Nephrol Dial Transplant. 2019;34(8):1280–5.

    Article  CAS  PubMed  Google Scholar 

  53. Coppo R, Amore A, Gianoglio B, Cacace G, Picciotto G, Roccatello D, et al. Angiotensin II local hyperreactivity in the progression of IgA nephropathy. Am J Kidney Dis. 1993;21(6):593–602.

    Article  CAS  PubMed  Google Scholar 

  54. Bienenstock KC. Characteristics and functions of mucosa-associated lymphoid tissue. In: Handbook of mucosal immunology. Part 1; 1994. p. 141–9.

    Google Scholar 

  55. Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 2014;7:455–66.

    Article  CAS  PubMed  Google Scholar 

  56. Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):599–608.

    Article  PubMed  Google Scholar 

  57. Harabuchi Y, Takahara M. Recent advances in the immunological understanding of association between tonsil and immunoglobulin A nephropathy as a tonsil-induced autoimmune/inflammatory syndrome. Immunity Inflammation and Disease. 2019;7:86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol. 2010;28:243–73.

    Article  CAS  PubMed  Google Scholar 

  59. Xin G, Shi W, Xu LX, Su Y, Yan LJ, Li KS. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol. 2013;26(4):683–90.

    Article  CAS  PubMed  Google Scholar 

  60. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R. Innate immunity and IgA nephropathy. J Nephrol. 2010;23(6):626–32.

    PubMed  Google Scholar 

  61. Tomino Y, Sakai H, Endoh M, Suga T, Miura M, Kaneshige H, et al. Cross-reactivity of IgA antibodies between renal mesangial areas and nuclei of tonsillar cells in patients with IgA nephropathy. Clin Exp Immunol. 1983;51(3):605–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Béné MC, Hurault de Ligny B, Kessler M, Foliguet B, Faure GC. Tonsils in IgA nephropathy. Contrib Nephrol. 1993;104:153–61.

    Article  PubMed  Google Scholar 

  63. Amore A, Coppo R, Nedrud JG, Sigmund N, Lamm ME, Emancipator SN. The role of nasal tolerance in a model of IgA nephropathy induced in mice by Sendai virus. Clin Immunol. 2004;113(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  64. Gesualdo L, Lamm ME, Emancipator SN. Defective oral tolerance promotes nephritogenesis in experimental IgA nephropathy induced by oral immunization. J Immunol. 1990;145(11):3684–91.

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe H, Goto S, Mori H, Higashi K, Hosomichi K, Aizawa N, et al. Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol Dial Transplant. 2017;32(12):2072–9.

    CAS  PubMed  Google Scholar 

  66. Park JI, Kim TY, Oh B, Cho H, Kim JE, Yoo SH, et al. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci Rep. 2020;10(1):16206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muto M, Manfroi B, Suzuki H, Joh K, Nagai M, Wakai S, et al. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B Cells in IgA nephropathy. J Am Soc Nephrol. 2017;28(4):1227–38.

    Article  CAS  PubMed  Google Scholar 

  68. Zachova K, Kosztyu P, Zadrazil J, Matousovic K, Vondrak K, Hubacek P, et al. Role of epstein-barr virus in pathogenesis and racial distribution of IgA nephropathy. Front Immunol. 2020;11:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coppo R. The gut–kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol. 2018;33(1):53–61.

    Article  PubMed  Google Scholar 

  70. Collin P, Syrjanen J, Partanen J, Pasternack A, Kaukinen K, Mustonen J. Celiac disease and HLA DQ in patients with IgA nephropathy. Am J Gastroenterol. 2002;97(10):2572–6.

    Article  PubMed  Google Scholar 

  71. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011;121(10):3991–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity. 2018;49:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, et al. Microbiota and metabolome associated with Immunoglobulin A Nephropathy (IgAN). PLoS One. 2014;9(6):e99006.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Davin JC, Forget P, Mahieu PR. Increased intestinal permeability to (51 Cr) EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatr Scand. 1988;77(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  75. Rostoker G, Wirquin V, Terzidis H, Petit-Phar M, Chaumette MT, Delchier JC, et al. Mucosal immunity in primary glomerulonephritis. Nephron. 1993;63(3):286–90.

    Article  CAS  PubMed  Google Scholar 

  76. Coppo R, Amore A, Roccatello D, Gianoglio B, Molino A, Piccoli G, et al. IgA antibodies to dietary antigens and lectin-binding IgA in Sera From Italian, Australian, and Japanese IgA Nephropathy Patients. Am J Kidney Dis. 1991;17(4):480–7.

    Article  CAS  PubMed  Google Scholar 

  77. Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR, Ma XY. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant. 2008;23(5):1608–14.

    Article  CAS  PubMed  Google Scholar 

  78. Coppo R, Camilla R, Amore A, Peruzzi L, Daprà V, Loiacono E, et al. Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy: ORIGINAL ARTICLE. Clin Exp Immunol. 2010;159(1):73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Donadio MEL, Loiacono E, Peruzzi L, Amore A, Camilla R, Chiale F, et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol. 2014;29(9):1545–51.

    Article  PubMed  Google Scholar 

  80. Coppo R, Mazzucco G, Martina G, Roccatello D, Amore A, Novara R, et al. Gluten-induced experimental IgA glomerulopathy. Lab Investig. 1989;60(4):499–506.

    CAS  PubMed  Google Scholar 

  81. Papista C, Lechner S, Ben Mkaddem S, Lestang MB, Abbad L, Bex-Coudrat J, et al. Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction. Kidney Int. 2015;88(2):276–85.

    Article  CAS  PubMed  Google Scholar 

  82. Coppo R, Roccatello D, Amore A, Quattrocchio G, Molino A, Gianoglio B, et al. Effects of a gluten-free diet in primary IgA nephropathy. Clin Nephrol. 1990;33(2):72–86.

    CAS  PubMed  Google Scholar 

  83. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. 2015;26(7):1503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Daha MR, van Kooten C. Role of complement in IgA nephropathy. J Nephrol. 2016;29:1–4.

    Article  CAS  PubMed  Google Scholar 

  85. Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, Willicombe M, McLean AG, Brookes P, et al. Circulating complement factor H–related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92(4):942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jia M, Zhu L, Zhai Y, Chen P, Xu B, Guo W, et al. Variation in complement factor H affects complement activation in immunoglobulin A vasculitis with nephritis. Nephrology. 2020;25(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu L, Guo W-Y, Shi S-F, Liu L-J, Lv J-C, Medjeral-Thomas NR, et al. Circulating complement factor H–related protein 5 levels contribute to development and progression of IgA nephropathy. Kidney Int. 2018;94(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  88. Guo W-Y, Sun L-J, Dong H-R, Wang G-Q, Xu X-Y, Zhao Z-R, et al. Glomerular complement factor H–related protein 5 is associated with histologic injury in immunoglobulin A nephropathy. Kidney Int Reports. 2021;6(2):404–13.

    Article  Google Scholar 

  89. Wu J, Hu Z, Wang Y, Hu D, Yang Q, Li Y, et al. Severe glomerular C3 deposition indicated severe renal lesions and poor prognosis in patients with immunoglobulin A nephropathy. Histopathology. 2021;78(6):882–95.

    Article  PubMed  Google Scholar 

  90. Wu D, Li X, Yao X, Zhang N, Lei L, Zhang H, et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin Exp Nephrol. 2021;25(6):641–51.

    Article  CAS  PubMed  Google Scholar 

  91. Espinosa M, Ortega R, Sanchez M, Segarra A, Salcedo MT, Gonzalez F, et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9(5):897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nam KH, Joo YS, Lee C, Lee S, Kim J, Yun HR, et al. Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin Immunol. 2020;211:108331.

    Article  CAS  PubMed  Google Scholar 

  93. Segarra A, Romero K, Agraz I, Ramos N, Madrid A, Carnicer C, et al. Mesangial C4d deposits in early IgA nephropathy. Clin J Am Soc Nephrol. 2018;13(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  94. Trimarchi H, Coppo R. Glomerular endothelial activation, C4d deposits and microangiopathy in immunoglobulin A nephropathy. Nephrol Dial Transplant. 36(4):581–6.

    Google Scholar 

  95. Stangou M, Alexopoulos E, Pantzaki A, Leonstini M, Memmos D. C5b-9 glomerular deposition and tubular α3β1-integrin expression are implicated in the development of chronic lesions and predict renal function outcome in immunoglobulin a nephropathy. Scand J Urol Nephrol. 2008;42(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  96. Camilla R, Suzuki H, Daprà V, Loiacono E, Peruzzi L, Amore A, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol. 2011;6(8):1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schena FP, D’Altri C, Cerullo G, Manno C, Gesualdo L. ACE gene polymorphism and IgA nephropathy: an ethnically homogeneous study and a meta-analysis. Kidney Int. 2001;60:732–40.

    Article  CAS  PubMed  Google Scholar 

  98. Sallustio F, Curci C, Di Leo V, Gallone A, Pesce F, Gesualdo L. A new vision of iga nephropathy: the missing link. Int J Mol Sci. 2020;21:189.

    Article  CAS  Google Scholar 

  99. Graterol F, Navarro-Muñoz M, Ibernon M, López D, Troya MI, Pérez V, et al. Poor histological lesions in IgA nephropathy may be reflected in blood and urine peptide profiling. BMC Nephrol. 2013;14(1):82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haas M. Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244 cases. Am J Kidney Dis. 1997;29(6):829–42.

    Article  CAS  PubMed  Google Scholar 

  101. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts ISD, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.

    Article  PubMed  Google Scholar 

  102. Roberts ISD, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.

    Article  PubMed  Google Scholar 

  103. Haas M, Verhave JC, Liu ZH, Alpers CE, Barratt J, Becker JU, et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol. 2017;28(2):691–701.

    Article  CAS  PubMed  Google Scholar 

  104. Roberts ISD. Oxford classification of immunoglobulin A nephropathy: an update. Curr Opin Nephrol Hypertens. 2013;22:281–6.

    Article  CAS  PubMed  Google Scholar 

  105. Coppo R, Troyanov S, Camilla R, Hogg RJ, Cattran DC, Cook HT, et al. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int. 2010;77(10):921–7.

    Article  CAS  PubMed  Google Scholar 

  106. Coppo R, Lofaro D, Camilla RR, Bellur S, Cattran D, Cook HT, et al. Risk factors for progression in children and young adults with IgA nephropathy: an analysis of 261 cases from the VALIGA European cohort. Pediatr Nephrol. 2017;32(1):139–50.

    Article  PubMed  Google Scholar 

  107. Le W, Zeng C-H, Liu Z-HZ, Liu D, Yang Q, Lin R-X, et al. Validation of the Oxford classification of IgA nephropathy for pediatric patients from China. BMC Nephrol. 2012;13(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Hashimura Y, et al. Validity of the Oxford classification of IgA nephropathy in children. Pediatr Nephrol. 2012;27(5):783–92.

    Article  PubMed  Google Scholar 

  109. Edström Halling S, Söderberg MP, Berg UB. Predictors of outcome in paediatric IgA nephropathy with regard to clinical and histopathological variables (Oxford classification). Nephrol Dial Transplant. 2012;27(2):715–22.

    Article  PubMed  Google Scholar 

  110. Coppo R, D’Arrigo G, Tripepi G, Russo ML, Roberts ISD, Bellur S, et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford Classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant. 2020;35(6):1002–9.

    Article  CAS  PubMed  Google Scholar 

  111. Coppo R. Mesangial C4d deposition may predict progression of kidney disease in pediatric patients with IgA nephropathy. Pediatr Nephrol. 2008;32(7):1211–20.

    Google Scholar 

  112. Coppo R. C4d deposits in IgA nephropathy: where does complement activation come from? Pediatr Nephrol. 2017;32:1097–101.

    Article  PubMed  Google Scholar 

  113. Yoshikawa N, Iijima K, Ito H. IgA nephropathy in children. Nephron. 1999;83:1–12.

    Article  CAS  PubMed  Google Scholar 

  114. Coppo R, Gianoglio B, Porcellini MG, Maringhini S. Frequency of renal diseases and clinical indications for renal biopsy in children (Report of the Italian National Registry of Renal Biopsies in children). Nephrol Dial Transplant. 1998;13(2):293–7.

    Article  CAS  PubMed  Google Scholar 

  115. Wyatt RJ, Julian BA, Bhathena DB, Mitchell BL, Holland NH, Malluche HH. IgA nephropathy: presentation, clinical course, and prognosis in children and adults. Am J Kidney Dis. 1984;4(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  116. Lévy M, Gonzalez-Burchard G, Broyer M, Dommergues JP, Foulard M, Sorez JP, et al. Berger’s disease in children: natural history and outcome. Med (United States). 1985;64(3):157–80.

    Google Scholar 

  117. Cambier A, Gleeson PJ, Flament H, Le Stang MB, Monteiro RC. New therapeutic perspectives for IgA nephropathy in children. Pediatr Nephrol. 2020;36(3):497–506.

    Article  PubMed  Google Scholar 

  118. Coppo RDG. Factors predicting progression of IgA nephropathies.itle. J Nephrol. 2005;18(5):503–12.

    PubMed  Google Scholar 

  119. Ronkainen J, Ala-Houhala M, Autio-Harmainen H, Jahnukainen T, Koskimies O, Merenmies J, et al. Long-term outcome 19 years after childhood IgA nephritis: a retrospective cohort study. Pediatr Nephrol. 2006;21(9):1266–73.

    Article  PubMed  Google Scholar 

  120. Wyatt RJ, Kritchevsky SB, Woodford SY, Miller PM, Roy S, Holland NH, et al. IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr. 1995;127(6):913–9.

    Article  CAS  PubMed  Google Scholar 

  121. Nozawa R, Suzuki J, Takahashi A, Isome M, Kawasaki Y, Suzuki S, et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin Nephrol. 2005;64(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  122. Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Sako M, et al. Spontaneous remission in children with IgA nephropathy. Pediatr Nephrol. 2013;28(1):71–6.

    Article  PubMed  Google Scholar 

  123. Linné T, Berg U, Bohman SO, Sigström L. Course and long-term outcome of idiopathic IgA nephropathy in children. Pediatr Nephrol. 1991;5(4):383–6.

    Article  PubMed  Google Scholar 

  124. Hogg RJ, Silva FG, Wyatt RJ, Reisch JS, Craig Argyle J, Savino DA. Prognostic indicators in children with IgA nephropathy—report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 1994;8(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  125. Sevillano AM, Gutiérrez E, Yuste C, Cavero T, Mérida E, Rodríguez P, et al. Remission of Hematuria Improves Renal Survival in IgA Nephropathy. J Am Soc Nephrol. 2017;28(10):3089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Radhakrishnan J, Cattran DC. The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines-application to the individual patient. Kidney Int. 2012;82:840–56.

    Article  PubMed  Google Scholar 

  127. Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4):S1–276.

    Article  Google Scholar 

  128. Kamei K, Nakanishi K, Ito S, Saito M, Sako M, Ishikura K, et al. Long-term results of a randomized controlled trial in childhood IgA nephropathy. Clin J Am Soc Nephrol. 2011;6(6):1301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shima Y, Nakanishi K, Kamei K, Togawa H, Nozu K, Tanaka R, et al. Disappearance of glomerular IgA deposits in childhood IgA nephropathy showing diffuse mesangial proliferation after 2 years of combination/prednisolone therapy. Nephrol Dial Transplant. 2011;26(1):163–9.

    Article  CAS  PubMed  Google Scholar 

  130. Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barbour SJ, Coppo R, Zhang H, Liu ZH, Suzuki Y, Matsuzaki K, et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med. 2019;179(7):942–52.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Barbour SJ, Coppo R, Er L, Russo ML, Liu Z-H, Ding J, et al. Updating the international IgA nephropathy prediction tool for use in children. Kidney Int. 2020;99(6):1439–50.

    Article  PubMed  Google Scholar 

  133. Van Den Akker EH, Sanders EAM, Van Staatj BK, Rijkers GT, Rovers MM, Hoes AW, et al. Long-term effects of pediatric adenotonsillectomy on serum immunoglobulin levels: results of a randomized controlled trial. Ann Allergy Asthma Immunol. 2006;97(2):251–6.

    Article  PubMed  Google Scholar 

  134. Cattran DC, Feehally J, Cook HT, Liu ZH, Fervenza FC, Mezzano SA, et al. Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl. 2012;2(2):139–274.

    Google Scholar 

  135. Floege J, Barbour SJ, Cattran DC, Hogan JJ, Nachman PH, Tang SCW, et al. Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95(2):268–80.

    Article  PubMed  Google Scholar 

  136. Kawasaki Y, Takano K, Suyama K, Isome M, Suzuki H, Sakuma H, et al. Efficacy of tonsillectomy pulse therapy versus multiple-drug therapy for IgA nephropathy. Pediatr Nephrol. 2006;21(11):1701–6.

    Article  PubMed  Google Scholar 

  137. Feehally J, Coppo R, Troyanov S, Bellur SS, Cattran D, Cook T, et al. Tonsillectomy in a European Cohort of 1,147 Patients with IgA Nephropathy. Nephron. 2016;132(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  138. Coppo R, Peruzzi L, Amore A, Piccoli A, Cochat P, Stone R, et al. IgACE: a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol. 2007;18(6):1880–8.

    Article  CAS  PubMed  Google Scholar 

  139. Bhattacharjee R, Filler G. Additive antiproteinuric effect of ACE inhibitor and losartan in IgA nephropathy [2]. Pediatr Nephrol. 2002;17:302–4.

    Article  PubMed  Google Scholar 

  140. Shima Y, Nakanishi K, Sako M, Saito-Oba M, Hamasaki Y, Hataya H, et al. Lisinopril versus lisinopril and losartan for mild childhood IgA nephropathy: a randomized controlled trial (JSKDC01 study). Pediatr Nephrol. 2019;34(5):837–46.

    Article  PubMed  Google Scholar 

  141. Pozzi C, Bolasco PG, Fogazzi G, Andrulli S, Altieri P, Ponticelli C, et al. Corticosteroids in IgA nephropathy: a randomised controlled trial. Lancet. 1999;353(9156):883–7.

    Article  CAS  PubMed  Google Scholar 

  142. Manno C, Torres DD, Rossini M, Pesce F, Schena FP. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant. 2009;24(12):3694–701.

    Article  CAS  PubMed  Google Scholar 

  143. Pozzi C, Andrulli S, Del Vecchio L, Melis P, Fogazzi GB, Altieri P, et al. Corticosteroid effectiveness in IgA nephropathy: long-term results of a randomized, controlled trial. J Am Soc Nephrol. 2004;15(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  144. Lv J, Zhang H, Wong MG, Jardine MJ, Hladunewich M, Jha V, et al. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA J Am Med Assoc. 2017;318(5):432–42.

    Article  CAS  Google Scholar 

  145. Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med. 2015;373(23):2225–36.

    Article  CAS  PubMed  Google Scholar 

  146. Coppo R. Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin Nephrol. 2008;28(1):18–26.

    Article  PubMed  Google Scholar 

  147. Waldo FB, Alexander R, Wyatt RJ, Kohaut EC. Alternate-day prednisone therapy in children with IgA-associated nephritis. Am J Kidney Dis. 1989;13(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  148. Welch TR, Fryer C, Shely E, Witte DP, Quinlan M. Double-blind, controlled trial of short-term prednisone therapy in immunoglobulin A glomerulonephritis. J Pediatr. 1992;121(3):474–7.

    Article  CAS  PubMed  Google Scholar 

  149. Niaudet P, Murcia I, Beaufils H, Broyer MHR. Primary IgA nephropathies in children: prognosis and treatment. Adv Nephrol Necker Hosp. 1993;22:121–40.

    CAS  PubMed  Google Scholar 

  150. Hogg RJ, Lee J, Nardelli N, Julian BA, Cattran D, Waldo B, et al. Clinical trial to evaluate omega-3 fatty acids and alternate day prednisone in patients with IgA nephropathy: report from the Southwest Pediatric Nephrology Study Group. Clin J Am Soc Nephrol. 2006;1(3):467–74.

    Article  CAS  PubMed  Google Scholar 

  151. Yoshikawa N, Ito H, Sakai T, Takekoshi Y, Honda M, Awazu M, Ito K, Iitaka K, Koitabashi Y, Yamaoka K, Nakagawa K, Nakamura H, Matsuyama S, Seino Y, Takeda N, Hattori SNM. A controlled trial of combined therapy for newly diagnosed severe childhood IgA nephropathy. The Japanese Pediatric IgA Nephropathy Treatment Study Group. J Am Soc Nephrol. 1999;10:101–9.

    Article  CAS  PubMed  Google Scholar 

  152. Yoshikawa N, Honda M, Iijima K, Awazu M, Hattori S, Nakanishi K, et al. Steroid treatment for severe childhood IgA nephropathy: a randomized, controlled trial. Clin J Am Soc Nephrol. 2006;1(3):511–7.

    Article  CAS  PubMed  Google Scholar 

  153. Shima Y, Nakanishi K, Kaku Y, Ishikura K, Hataya H, Matsuyama T, et al. Combination therapy with or without warfarin and dipyridamole for severe childhood IgA nephropathy: an RCT. Pediatr Nephrol. 2018;33(11):2103–12.

    Article  PubMed  Google Scholar 

  154. Pozzi C, Andrulli S, Pani A, Scaini P, Del Vecchio L, Fogazzi G, et al. Addition of azathioprine to corticosteroids does not benefit patients with IgA nephropathy. J Am Soc Nephrol. 2010;21(10):1783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cambier A, Rabant M, Peuchmaur M, Hertig A, Deschenes G, Couchoud C, et al. Immunosuppressive treatment in children with IgA nephropathy and the clinical value of podocytopathic features. Kidney Int Reports. 2018;3(4):916–25.

    Article  Google Scholar 

  156. Shenoy M, Ognjanovic MV, Coulthard MG. Treating severe Henoch-Schönlein and IgA nephritis with plasmapheresis alone. Pediatr Nephrol. 22(8):1167–71.

    Google Scholar 

  157. Fellström BC, Barratt J, Cook H, Coppo R, Feehally J, de Fijter JW, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017;389(10084):2117–27.

    Article  PubMed  Google Scholar 

  158. Hou JH, Le WB, Chen N, Wang WM, Liu ZS, Liu D, et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am J Kidney Dis. 2017;69(6):788–95.

    Article  CAS  PubMed  Google Scholar 

  159. Hogg RJ, Bay RC, Jennette JC, Sibley R, Kumar S, Fervenza FC, et al. Randomized controlled trial of mycophenolate mofetil in children, adolescents, and adults with IgA nephropathy. Am J Kidney Dis. 2015;66(5):783–91.

    Article  CAS  PubMed  Google Scholar 

  160. Ballardie FW, Roberts ISD. Controlled prospective trial of prednisolone and cytotoxics in progressive IgA nephropathy. J Am Soc Nephrol. 2002;13(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  161. Lafayette RA, Canetta PA, Rovin BH, Appel GB, Novak J, Nath KA, et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol. 2017;28:1306–13.

    Article  CAS  PubMed  Google Scholar 

  162. Song YH, Cai GY, Xiao YF, Wang YP, Yuan BS, Xia YY, et al. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: a meta-analysis. BMC Nephrol. 2017;18(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liu LJ, Yang Y-Z, Shi SF, Bao YF, Yang C, Zhu SN, et al. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2019;74(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  164. Coppo R. Biomarkers and targeted new therapies for IgA nephropathy. Pediatr Nephrol. 2008;32(5):725–31.

    Article  Google Scholar 

  165. Selvaskandan H, Cheung CK, Muto M, Barratt J. New strategies and perspectives on managing IgA nephropathy. Clin Exp Nephrol. 2019;23:577–88.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sato M, Hotta O, Tomioka S, Horigome I, Chiba S, Miyazaki M, et al. Cohort study of advanced IgA nephropathy: efficacy and limitations of corticosteroids with tonsillectomy. Nephron Clin Pract. 2003;93(4):c137–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licia Peruzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coppo, R., Peruzzi, L. (2023). IgA Nephropathy. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics