Skip to main content

Aquatic Feeding in Lissamphibia

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

  • 1040 Accesses

Abstract

Modern amphibians are referred to as Lissamphibia and comprise the three extant groups: Anura (frogs and toads), Caudata (salamanders and newts) and Gymnophiona (caecilians). From a phylogenetic point of view, lissamphibians are considered the sister taxon of extant amniotes (sauropsids and mammals). Lissamphibians have a long evolutionary history, reaching back into the Late Paleozoic and most probably originated within a temnospondyl clade. One of the most conspicuous features of lissamphibians is their aquatic larval stage. Many lissamphibians have, however, secondarily reduced the free-living larval stage and are direct developers. Direct development is a secondary feature and might be seen as an adaptation to terrestrial life. Given that the aquatic larval stage is the ancestral condition for lissamphibians, adaptations to aquatic feeding might also be seen to be the ancestral condition, at least for lissamphibian larvae. After metamorphosis, some lissamphibians become terrestrial, others adopt a semiterrestrial/semiaquatic lifestyle, while others remain fully aquatic. Accordingly, although in many lissamphibian cases the secondary nature of aquatic adaptations might be obvious, a strict distinction between secondary and primary adaptations is less clear in others. Examples of secondarily aquatic lissamphibians are aquatic frogs and toads, as well as some desmognathid salamanders that have definitely reinvaded aquatic trophic habitats during their evolutionary history. In contrast, some salamandrid and ambystomatid salamanders continuously switch between aquatic and terrestrial lifestyles after metamorphosis and it is not obvious whether their (semi)aquatic lifestyle is retained from their larval condition (i.e. primary) or has evolved de novo. In fact, many adaptations to aquatic feeding in lissamphibians might represent a combination of both primary and secondary features, defying a strict dichotomy. In this chapter we summarize aquatic feeding strategies in all three extant groups of lissamphibians and highlight homologous and convergent features where appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altig, R., Whiles, M., & Taylor, C. (2007). What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology, 52, 386–395.

    Article  Google Scholar 

  • Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., & Sumida, S. S. (2008). A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature, 453, 515–518.

    Article  CAS  PubMed  Google Scholar 

  • Anzeraey, A., Aumont, M., Decamps, T., Herrel, A., & Pouydebat, E. (2017). The effect of food properties on grasping and manipulation in the aquatic frog Xenopus laevis. The Journal of Experimental Biology, 220, 4486–4491.

    PubMed  Google Scholar 

  • Avila, V. L., & Frye, P. G. (1977). Feeding behavior in the African clawed frog (Xenopus laevis Daudin). Herpetologica, 33, 152–161.

    Google Scholar 

  • Avila, V. L., & Frye, P. G. (1978). Feeding behavior of the African clawed frog (Xenopus laevis Daudin): (Amphibia, Anura, Pipidae): effect of the prey type. Journal of Herpetology, 12, 391–396.

    Article  Google Scholar 

  • Barrionuevo, J. S. (2016). Independent evolution of suction feeding in Neobatrachia: Feeding mechanisms of two species of Telmatobius (Anura: Telmatobiidae). The Anatomical Record, 299, 181–196.

    Article  PubMed  Google Scholar 

  • Beisser, C. J., & Weisgram, J. (2001). Dorsal tongue morphology and lingual glands in Chelonians. Journal of Morphology, 248, 205.

    Google Scholar 

  • Beisser, C. J., Weisgram, J., & Splechtna, H. (1995). Dorsal lingual epithelium of Platemys pallidipectoris (Pleurodira, Chelidae). Journal of Morphology, 226, 267–276.

    Article  PubMed  Google Scholar 

  • Bemis, W. E., Schwenk, K., & Wake, M. (1983). Morphology and function of the feeding apparatus in Dermophis mexicanus (Amphibia: Gymnophiona). Zoological Journal of the Linnean Society London, 77, 75–96.

    Article  Google Scholar 

  • Bragg, A. N. (1964). Further study of predation and cannibalism in spadefoot tadpoles. Herpetologica, 20, 17–24.

    Google Scholar 

  • Bullock, T. H., Bodznick, D. A., & Northcutt, R. G. (1993). The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. In How do brains work? (581–602). Springer.

    Google Scholar 

  • Carreno, C. A., & Nishikawa, K. C. (2010). Aquatic feeding in pipid frogs: The use of suction for prey capture. The Journal of Experimental Biology, 213, 2001–2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll, R. L., & Currie, P. J. (1975). Microsaurs as possible apodan ancestors. Zoological Journal of the Linnean SocietyLondon, 57, 229–247.

    Article  Google Scholar 

  • Cundall, D., Lorenz-Elwood, J., & Groves, J. D. (1987). Asymmetric suction feeding in primitive salamanders. Experientia, 43, 1229–1231.

    Article  Google Scholar 

  • Cundall, D., Fernandez, E., & Irish, F. (2017). The suction mechanism of the pipid frog, Pipa pipa (Linnaeus, 1758). Journal of Morphology, 278(9), 1229–1240. https://doi.org/10.1002/jmor.20707

    Article  PubMed  Google Scholar 

  • Dalrymple, G. H., Juterbock, J. E., & La Valley, A. L. (1985). Function of the atlanto-mandibular ligaments of desmognathine salamanders. Copeia, 254–257.

    Google Scholar 

  • Dean, M. (2003). Suction feeding in the pipid frog, Hymenochirus boettgeri: Kinematic and behavioral considerations. Copeia, 2003(4), 879–886.

    Article  Google Scholar 

  • Deban, S. M., & Marks, S. B. (2002). Metamorphosis and evolution of feeding behaviour in salamanders of the family Plethodontidae. Zoological Journal of the Linnean Society London, 134, 375–400.

    Article  Google Scholar 

  • Deban, S. M., & Olson, W. M. (2002). Suction feeding by a tiny predatory tadpole. Nature, 420, 41–42.

    Article  CAS  PubMed  Google Scholar 

  • Deban, S. M., & Richardson, J. C. (2017). A peculiar mechanism of bite-force enhancement in lungless salamanders revealed by a new geometric method for modeling muscle moments. The Journal of Experimental Biology, 220, 3588–3597.

    PubMed  Google Scholar 

  • Deban, S., & Wake, D. (2000). Aquatic feeding in salamanders. In K. Schwenk (Ed.), Feeding: Form, function and evolution in tetrapod vertebrates (pp. 65–94). Academic.

    Chapter  Google Scholar 

  • Deban, S. M., O'Reilly, J. C., & Nishikawa, K. C. (2001). The evolution of the motor control of feeding in amphibians. American Zoologist, 41, 1280–1298.

    Google Scholar 

  • Denoël, M., & Joly, P. (2000). Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata). Proceedings of the Royal Society of London Series B, 267, 1481–1485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denoël, M., Joly, P., & Whiteman, H. H. (2005). Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biological Reviews, 80, 663–671.

    Article  PubMed  Google Scholar 

  • Dole, W., Rose, B. B., & Tachiki, K. H. (1981). Western toads (Bufo boreas) learn odor of prey insects. Herpetologica, 37, 63–68.

    Google Scholar 

  • Doran, G., & Baggett, H. (1972). The specialized lingual papillae of Tachyglossus aculeatus I. Gross and light microscopic features. The Anatomical Record, 172, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1994). Biology of amphibians. JHU Press.

    Book  Google Scholar 

  • Emerson, S. B. (1977). Movement of the hyoid in frogs during feeding. The American Journal of Anatomy, 149, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Fabrezi, M., & Lobo, F. (2009). Hyoid skeleton, its related muscles, and morphological novelties in the frog Lepidobatrachus (Anura, Ceratophyridae). The Anatomical Record, 292, 1700–1712.

    Article  PubMed  Google Scholar 

  • Fernandez, E., Irish, F., & Cundall, D. (2017). How a frog, Pipa pipa, succeeds or fails in catching fish. Copeia, 105(1), 108–119.

    Article  Google Scholar 

  • Fortuny, J., Marcé-Nogué, J., Heiss, E., Sanchez, M., Gil, L., & Galobart, À. (2015). 3D Bite modeling and feeding mechanics of the largest living amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia: Urodela). PLoS One, 10, e0121885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox, H. (1985). The tentacles of Ichthyophis (Amphibia: Caecilia) with special reference to the skin. Journal of Zoology, 205, 223–234.

    Article  Google Scholar 

  • Fritzsch, B., & Wake, M. H. (1986). The distribution of ampullary organs in Gymnophiona. Journal of Herpetology, 20, 90–93.

    Article  Google Scholar 

  • Fritzsch, B., Drewes, R. C., & Ruibal, R. (1987). The retention of the lateral line nucleus in adult anurans. Copeia, 1987, 127–135.

    Article  Google Scholar 

  • Gillis, G., & Lauder, G. (1994). Aquatic prey transport and the comparative kinematics of Ambystoma tigrinum feeding behaviors. The Journal of Experimental Biology, 187, 159–179.

    Article  CAS  PubMed  Google Scholar 

  • Gosline, W. A. (1987). Jaw structures and movements in higher teleostean fishes. Japanese Journal of Ichthyology, 34, 21–32.

    Article  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Harvard University Press.

    Google Scholar 

  • Gray, L. A., O’Reilly, J. C., & Nishikawa, K. C. (1997). Evolution of forelimb movement patterns for prey manipulation in anurans. Journal of Experimental Zoology, 277, 417–424.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, M. (1978). The biology of the monotremes. Academic.

    Google Scholar 

  • Grosjean, S., Vences, M., & Dubois, A. (2004). Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frogs, genus Hoplobatrachus (Ranidae). Biological Journal of the Linnean Society, 81, 171–181.

    Article  Google Scholar 

  • Grzimek. (2003). Grzimek’s animal life encyclopedia. In M. Hutchins, W. E. Duellman, & N. Schlager (Eds.), Amphibians (Vol. 6, 2nd ed.). Gale Group.

    Google Scholar 

  • Haas, A. (2003). Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics, 19, 23–89.

    PubMed  Google Scholar 

  • Haas, A., Pohlmeyer, J., McLeod, D. S., Kleinteich, T., Hertwig, S. T., Das, I., & Buchholz, D. R. (2014). Extreme tadpoles II: the highly derived larval anatomy of Occidozyga baluensis (Boulenger, 1896), an obligate carnivorous tadpole. Zoomorphology, 133, 321–342.

    Article  Google Scholar 

  • Heiss, E. (2017). The Alpine “axolotl”: A remarkable example of phenotypic plasticity in Ichthyosaura alpestris (Amphibia: Salamandridae). Salamandra, 53, 137–141.

    Google Scholar 

  • Heiss, E., & Grell, J. (2019). Same but different: aquatic prey capture in paedomorphic and metamorphic Alpine newts. Zoological Letters, 5, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiss, E., Aerts, P., & Van Wassenbergh, S. (2013a). Masters of change: Seasonal plasticity in the prey-capture behavior of the Alpine newt Ichthyosaura alpestris (Salamandridae). The Journal of Experimental Biology, 216, 4426–4434.

    Article  PubMed  Google Scholar 

  • Heiss, E., Natchev, N., Gumpenberger, M., Weissenbacher, A., & Van Wassenbergh, S. (2013b). Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. The Journal of the Royal Society Interface, 10, 20121028.

    Article  PubMed  Google Scholar 

  • Heiss, E., Schwarz, D., & Konow, N. (2019). Chewing or not? Intraoral food processing in a salamandrid newt. The Journal of Experimental Biology, 2019, 222.

    Google Scholar 

  • Himstedt, W. (1973a). Die spektrale Empfindlichkeit von Urodelen in Abhängigkeit von Metamorphose, Jahreszeit und Lebensraum. Zoologische Jahrbücher Abteilung für allgemeine Zoologie, 77(2), 246–274.

    Google Scholar 

  • Himstedt, W. (1973b). Die spektrale Empfindlichkeit von Triturus alpestris (Amphibia, Urodela) während des Wasser- und Landlebens. Pflügers Archiv, 341, 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Himstedt, W. (1982). Prey selection in salamanders. In D. J. Ingle, M. A. Goodale, & R. J. M. Mansield (Eds.), Analysis of visual behavior. MIT Press.

    Google Scholar 

  • Himstedt, W. (1995). Structure and function of the eyes in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Zoology, 99, 81–94.

    Google Scholar 

  • Himstedt, W., & Fritzsch, B. (1990). Behavioural evidence for electroreception in larvae of the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Zoologische Jahrbücher Abteilung für allgemeine Zoologie, 94, 486–492.

    Google Scholar 

  • Huttenlocker, A. K., Pardo, J. D., Small, B. J., & Anderson, J. S. (2013). Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography. Journal of Vertebrate Paleontology, 33, 540–552.

    Article  Google Scholar 

  • Ivanović, A., Cvijanović, M., Denoël, M., Slijepčević, M., & Kalezić, M. L. (2014). Facultative paedomorphosis and the pattern of intra- and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris). Zoomorphology, 133, 99–109.

    Article  Google Scholar 

  • Kleinteich, T. (2010). Ontogenetic differences in the feeding biomechanics of oviparous and viviparous caecilians (Lissamphibia: Gymnophiona). Zoology, 113, 283–294.

    Article  PubMed  Google Scholar 

  • Kleinteich, T., & Haas, A. (2011). The hyal and ventral branchial muscles in caecilian and salamander larvae: Homologies and evolution. Journal of Morphology, 272, 598–613.

    Article  PubMed  Google Scholar 

  • Kleinteich, T., Haas, A., & Summers, A. P. (2008). Caecilian jaw-closing mechanics: Integrating two muscle systems. The Journal of the Royal Society Interface, 5, 1491–1504.

    Article  PubMed  Google Scholar 

  • Kunisch, S., Schwaha, T., Blüml, V., Beisser, C. J., Handschuh, S., & Lemell, P. (2021). Digital dissection of the head of the frogs Calyptocephalella gayi and Leptodactylus pentadactylus with emphasis on the feeding apparatus. Journal of Anatomy, 00, 1–14. https://doi.org/10.1111/joa.13426

    Article  Google Scholar 

  • Lauder, G., & Reilly, S. (1994). Amphibian feeding behavior: Comparative biomechanics and evolution. In V. Bels, M. Chardon, & P. Vandewalle (Eds.), Biomechanics of feeding in vertebrates (pp. 163–195). Springer.

    Chapter  Google Scholar 

  • Lauder, G. V., & Shaffer, H. B. (1985). Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders. Journal of Morphology, 185, 297–326.

    Article  CAS  PubMed  Google Scholar 

  • Lauder, G. V., & Shaffer, H. B. (1986). Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. Zoological Journal of the Linnean Society London, 88, 277–290.

    Article  Google Scholar 

  • Lauder, G. V., & Shaffer, H. B. (1988). Ontogeny of functional design in tiger salamanders (Ambystoma tigrinum): Are motor patterns conserved during major morphological transformations? Journal of Morphology, 197, 249–268.

    Article  PubMed  Google Scholar 

  • Lemell, P., Lemell, C., Snelderwaard, P., Gumpenberger, M., Wochesländer, R., & Weisgram, J. (2002). Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). The Journal of Experimental Biology, 205, 1495–1506.

    Article  PubMed  Google Scholar 

  • Levine, R. P., Monroy, J. A., & Brainerd, E. L. (2004). Contribution of eye retraction to swallowing performance in the northern leopard frog, Rana pipiens. The Journal of Experimental Biology, 207, 1361–1368.

    Article  PubMed  Google Scholar 

  • Lorenz-Elwood, J. R., & Cundall, D. (1994). Morphology and feeding behavior of the feeding apparatus in Cryptobranchus alleganiensis (Amphibia: Caudata). Journal of Morphology, 220, 47–70.

    Article  Google Scholar 

  • Lukanov, S., Tzankov, N., Handschuh, S., Heiss, E., Naumov, B., & Natchev, N. (2016). On the amphibious food uptake and prey manipulation behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi, Arntzen and Wielstra, 2013). Zoology, 119, 224–231.

    Article  PubMed  Google Scholar 

  • Matsumoto, R., & Evans, S. E. (2017). The palatal dentition of tetrapods and its functional significance. Journal of Anatomy, 230, 47–65.

    Article  PubMed  Google Scholar 

  • Matthes, E. (1934). Bau und Funktion der Lippensäume wasserlebender Urodelen. Zeitschrift für Morphologie und Ökologie der Tiere, 28, 155–169.

    Article  Google Scholar 

  • Measey, G. J., & Herrel, A. (2006). Rotational feeding in caecilians: Putting a spin on the evolution of cranial design. Biology Letters, 2, 485–487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, B. T., & Larsen, J. H., Jr. (1989). Feeding performance in aquatic postmetamorphic newts (Urodela: Salamandridae): Are bidirectional flow systems necessarily inefficient? Canadian Journal of Zoology, 67, 2414–2421.

    Article  Google Scholar 

  • Moodie, G. (1978). Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin. Canadian Journal of Zoology, 56, 1005–1008.

    Article  Google Scholar 

  • Muller, M., & Osse, J. (1984). Hydrodynamics of suction feeding in fish. Transactions of the Zoological Society of Londo, 37, 51–135.

    Article  Google Scholar 

  • Münz, H., Claas, B., & Fritzsch, B. (1984). Electroreceptive and mechanoreceptive units in the lateral line of the axolotl Ambystoma mexicanum. Journal of Comparative Physiology. A, 154, 33–44.

    Article  Google Scholar 

  • Natchev, N., Heiss, E., Lemell, P., Stratev, D., & Weisgram, J. (2009). Analysis of prey capture and food transport kinematics in two Asian box turtles, Cuora amboinensis and Cuora flavomarginata (Chelonia, Geoemydidae), with emphasis on terrestrial feeding patterns. Zoology, 112, 113–127.

    Article  PubMed  Google Scholar 

  • Natchev, N., Tzankov, N., Vergilov, V., Kummer, S., & Handschuh, S. (2015). Functional morphology of a highly specialised pivot joint in the cranio-cervical complex of the minute lizard Ablepharus kitaibelii in relation to feeding ecology and behaviour. Contributions to Zoology, 84, 13–S3.

    Article  Google Scholar 

  • Nishikawa, K. C. (1999). Neuromuscular control of prey capture in frogs. Philosophical Transactions of the Royal Society of London Series B, 354, 941–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcutt, R. G. (1992). Distribution and innervation of lateral line organs in the axolotl. The Journal of Comparative Neurology, 325, 95–123.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum, R. A. (1983). The evolution of a unique dual jaw-closing mechanism in caecilians (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. Journal of Zoology, 199, 545–554.

    Article  Google Scholar 

  • Nussbaum, R. A., & Wilkinson, M. (1989). On the classification and phylogeny of caecilians (Amphibia: Gymnophiona), a critical review. Herpetological Monographs, 3, 1–42.

    Article  Google Scholar 

  • O’Reilly, J. (2000). Feeding in caecilians. In K. Schwenk (Ed.), Feeding: Form, function and evolution in tetrapod vertebrates (pp. 149–166). Academic.

    Chapter  Google Scholar 

  • O’Reilly, J. C., Deban, S. M., & Nishikawa, K. C. (2002). Derived life history characteristics constrain the evolution of aquatic feeding behavior in adult amphibians. In P. Aerts, K. D’Août, A. Herrel, & R. Van Damme (Eds.), Topics in functional and ecological vertebrate morphology (pp. 153–190). Shaker Publishing.

    Google Scholar 

  • Park, D., Lee, J.-H., Ra, N.-Y., & Eom, J. (2008). Male salamanders Hynobius leechii respond to water vibrations via the mechanosensory lateral line system. Journal of Herpetology, 42, 615–625.

    Article  Google Scholar 

  • Parker, H. (1956). Viviparous caecilians and amphibian phylogeny. Nature, 178, 250–252.

    Article  Google Scholar 

  • Parzefall, J. (1993). Behavioural ecology of cave-dwelling fishes. In T. J. Pitscher (Ed.), Behaviour of teleost fishes (pp. 573–606). Chapman & Hall.

    Chapter  Google Scholar 

  • Pethiyagoda, R., Manamendra-Arachchi, K., & Sudasinghe, H. (2014). Underwater and terrestrial feeding in the Sri Lankan wart-frog, Lankanectes corrugatus. The Ceylon Journal of Science (Biological Sciences), 43(2), 79–82.

    Article  Google Scholar 

  • Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., & Wells, K. D. (2004). Herpetology (3rd ed.). Prentice Hall.

    Google Scholar 

  • Przyrembel, C., Keller, B., & Neumeyer, C. (1995). Trichromatic color vision in the salamander (Salamandra salamandra). Journal of Comparative Physiology. A, 176, 575–586.

    Article  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.

    Article  PubMed  Google Scholar 

  • Quinzio, S., & Fabrezi, M. (2014). The lateral line system in anuran tadpoles: Neuromast morphology, arrangement, and innervation. The Anatomical Record, 297, 1508–1522.

    Article  PubMed  Google Scholar 

  • Regal, P. J. (1966). Feeding specializations and the classification of terrestrial salamanders. Evolution, 392–407.

    Google Scholar 

  • Regal, P. J., & Gans, C. (1976). Functional aspects of the evolution of frog tongues. Evolution, 30, 718–734.

    Article  PubMed  Google Scholar 

  • Reilly, S. M. (1986). Ontogeny of cranial ossification in the eastern newt, Notophthalmus viridescens (Caudata: Salamandridae), and its relationship to metamorphosis and neoteny. Journal of Morphology, 188, 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Reilly, S. M. (1996). The metamorphosis of feeding kinematics in Salamandra salamandra and the evolution of terrestrial feeding behavior. The Journal of Experimental Biology, 199, 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  • Reilly, S. M., & Lauder, G. V. (1988). Ontogeny of aquatic feeding performance in the eastern newt, Notophthalmus viridescens (Salamandridae). Copeia, 87–91.

    Google Scholar 

  • Reilly, S. M., & Lauder, G. V. (1991). Prey transport in the tiger salamander: quantitative electromyography and muscle function in tetrapods. The Journal of Experimental Zoology, 260, 1–17.

    Article  Google Scholar 

  • Reilly, S. M., & Lauder, G. V. (1992). Morphology, behavior, and evolution: Comparative kinematics of aquatic feeding in salamanders. Brain, Behavior and Evolution, 40, 182–196.

    Article  CAS  PubMed  Google Scholar 

  • Roelants, K., Gower, D. J., Wilkinson, M., Loader, S. P., Biju, S., Guillaume, K., Moriau, L., & Bossuyt, F. (2007). Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences of the United States of America, 104, 887–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, G. (1987). Visual behavior in salamanders. Springer.

    Book  Google Scholar 

  • San Mauro, D. (2010). A multilocus timescale for the origin of extant amphibians. Molecular Phylogenetics and Evolution, 56, 554–561.

    Article  PubMed  Google Scholar 

  • Schülert, N., & Dicke, U. (2002). The effect of stimulus features on the visual orienting behaviour of the salamander Plethodon jordani. The Journal of Experimental Biology, 205, 241–251.

    Article  PubMed  Google Scholar 

  • Schwarz, D., Konow, N., Roba, Y. T., & Heiss, E. (2020a). A salamander that chews using complex, three-dimensional mandible movements. The Journal of Experimental Biology, 223, jeb220749.

    Article  PubMed  Google Scholar 

  • Schwarz, D., Konow, N., Porro, L. B., & Heiss, E. (2020b). Ontogenetic plasticity in cranial morphology is associated with a change in the food processing behavior in Alpine newts. Frontiers in Zoology, 17, 1–16.

    Article  Google Scholar 

  • Schwarz, D., Gorb, S. N., Kovalev, A., Konow, N., & Heiss, E. (2020c). Flexibility of intraoral food processing in the salamandrid newt Triturus carnifex: Effects of environment and prey type. The Journal of Experimental Biology, 223, jeb232868.

    Article  PubMed  Google Scholar 

  • Schwenk, K., & Rubega, M. (2005). Diversity of vertebrate feeding systems. In J. M. Starck & T. Wang (Eds.), Physiological and ecological adaptations to feeding in vertebrates (pp. 1–41). Science Publishers.

    Google Scholar 

  • Schwenk, K., & Wake, D. B. (1993). Prey processing in Leurognathus marmoratus and the evolution of form and function in desmognathine salamanders (Plethodontidae). Biological Journal of the Linnean Society, 49, 141–162.

    Article  Google Scholar 

  • Shaffer, H. B., & Lauder, G. V. (1985). Patterns of variation in aquatic ambystomatid salamanders: Kinematics of the feeding mechanism. Evolution, 39(1), 83–92.

    Article  PubMed  Google Scholar 

  • Shaffer, H. B., & Lauder, G. V. (1988). The ontogeny of functional design: Metamorphosis of feeding behaviour in the tiger salamander (Ambystoma tigrinum). Journal of Zoology, 216, 437–454.

    Article  Google Scholar 

  • Shinn, E. A., & Dole, J. W. (1978). Evidence for a role for olfactory cues in the feeding response of Ieopard frogs, Rana pipiens. Herpetologica, 34, 167–172.

    Google Scholar 

  • Skorczewski, T., Cheer, A., & Wainwright, P. C. (2012). The benefits of planar circular mouths on suction feeding performance. The Journal of the Royal Society Interface, 9, 1767–1773.

    Article  PubMed  Google Scholar 

  • Smithson, T. R., Browne, M. A., Davies, S. J., Marshall, J. E., Millward, D., Walsh, S. A., & Clack, J. A. (2017). A new Mississippian tetrapod from Fife, Scotland, and its environmental context. Papers in Palaeontology, 3, 547–557.

    Article  Google Scholar 

  • Sokol, O. M. (1969). Feeding in the pipid frog Hymenochirus boettgeri (Tornier). Herpetologica, 25(1), 9–24.

    Google Scholar 

  • Stinson, C. M., & Deban, S. M. (2017). Functional trade-offs in the aquatic feeding performance of salamanders. Zoology, 125, 69–78.

    Article  PubMed  Google Scholar 

  • Trewavas, E. (1933). The hyoid and larynx of the anura. Philosophical Transactions of the Royal Society of London Series B, 222, 483–493.

    Google Scholar 

  • Trueb, L. (1993). Patterns of cranial diversity among the lissamphibia. In J. Hanken & B. K. Hall (Eds.), The skull – Volume 2: Patterns of structural and systematic diversity (pp. 255–343). University of Chicago Press.

    Google Scholar 

  • Uiblein, F., Durand, J., Juberthie, C., & Parzefall, J. (1992). Predation in caves: The effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguinus. Behavioural Processes, 28, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Van Dobben, W. H. (1937). Über den Kiefermechanismus der Knochenfische. Archives Néerlandaises de Zoologie, 2, 1–72.

    Article  Google Scholar 

  • Van Wassenbergh, S., & Heiss, E. (2016). Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts. Scientific Reports, 6, 29277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vera Candioti, M. F. (2005). Morphology and feeding in tadpoles of Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zoologica, 86, 1–11.

    Article  Google Scholar 

  • Vera Candioti, M. F. (2006). Ecomorphological guilds in anuran larvae: an application of geometric morphometric methods. Herpetological Journal, 16, 149–162.

    Google Scholar 

  • Vera Candioti, M. F., Lavilla, E. O., & Echeverria, D. D. (2004). Feeding mechanisms in two treefrogs, Hyla nana and Scinax nasicus (Anura: Hylidae). Journal of Morphology, 261, 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Vitt, L. J., & Caldwell, J. P. (2009). Herpetology. An introductory biology of amphibians and reptiles (3rd ed.). Academic.

    Google Scholar 

  • Wainwright, P. C., McGee, M. D., Longo, S. J., & Hernandez, P. L. (2015). Origins, innovations, and diversification of suction feeding in vertebrates. Integrative and Comparative Biology, 55(1), 134–145.

    Article  PubMed  Google Scholar 

  • Wake, M. H. (1977a). The reproductive biology of caecilians: an evolutionary perspective. In E. Taylor & S. Guttman (Eds.), The reproductive biology of amphibians (pp. 73–101). Springer.

    Chapter  Google Scholar 

  • Wake, M. H. (1977b). Fetal maintenance and its evolutionary significance in the Amphibia: Gymnophiona. Journal of Herpetology, 11, 379–386.

    Article  Google Scholar 

  • Wake, M. H. (1985). The comparative morphology and evolution of the eyes of caecilians (Amphibia, Gymnophiona). Zoomorphology, 105, 277–295.

    Article  Google Scholar 

  • Wake, M. H. (1992). Reproduction in caecilians. In W. C. Hamlett (Ed.), Reproductive biology of South American vertebrates (pp. 112–120). Springer.

    Chapter  Google Scholar 

  • Werth, A. (2000). Feeding in marine mammals. In K. Schwenk (Ed.), Feeding: Form, function and evolution in tetrapod vertebrates (pp. 475–514). Academic.

    Google Scholar 

  • Wiens, J. J., Bonett, R. M., & Chippindale, P. T. (2005). Ontogeny discombobulates phylogeny: Paedomorphosis and higher-level salamander relationships. Systematic Biology, 54, 91–110.

    Article  PubMed  Google Scholar 

  • Wiesinger, V. (2017). Feeding mechanisms of Calyptocephalella gayi. Diploma thesis at University of Vienna.

    Google Scholar 

  • Wilkinson, M., & Nussbaum, R. A. (1998). Caecilian viviparity and amniote origins. Journal of Natural History, 32, 1403–1409.

    Article  Google Scholar 

  • Wilkinson, M., & Nussbaum, R. A. (1999). Evolutionary relationships of the lungless caecilian Atretochoana eiselti (Amphibia: Gymnophiona: Typhlonectidae). Zoological Journal of the Linnean Society of London, 126, 191–223.

    Article  Google Scholar 

  • Winokur, R. M. (1988). The buccopharyngeal mucosa of the turtles (Testudines). Journal of Morphology, 196, 33–52.

    Article  CAS  PubMed  Google Scholar 

  • Witzmann, F., & Werneburg, I. (2017). The palatal interpterygoid vacuities of temnospondyls and the implications for the associated eye-and jaw musculature. The Anatomical Record, 300, 1240–1269.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Martin Lehmann, Daniel Schwarz and Katja Söhnel for providing video recordings of aquatic feeding in Typhlonectes natans and Carrie Carreño-Zingaro for providing pictures of feeding sequences of pipid frogs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egon Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heiss, E., Lemell, P. (2023). Aquatic Feeding in Lissamphibia. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_6

Download citation

Publish with us

Policies and ethics