Skip to main content
Log in

Extreme tadpoles II: the highly derived larval anatomy of Occidozyga baluensis (Boulenger, 1896), an obligate carnivorous tadpole

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Tadpoles of Occidozyga species have been reported to be carnivorous, feeding on insects and other tadpoles. We present photographic evidence for the previously undocumented larval feeding behavior in O. baluensis. Furthermore, we present a detailed anatomical description of the skull, cranial musculature, and gross gut morphology based on three-dimensional reconstructions from serial sections and μCT imagery. The cranial anatomy of larval O. baluensis is highly derived in many characters, with respect to taxa outside the genus Occidozyga, most notably the palatoquadrate and hyobranchial apparatus, that play a major role in tadpole feeding. A large larval stomach was present in the specimens examined, indicative of a macrophagous carnivorous mode of feeding. Because of the relatively small oral orifice, relatively large-sized food items found in the larval stomach, and the tunnel-like arrangement of structures that form the buccal cavity, we hypothesize that suction feeding utilizing strong negative pressure is employed by this species. Furthermore, we propose that force, rather than speed, is the main characteristic of their feeding. The unique features of the study species substantially expand the known morphospace for tadpoles, particularly among the Acosmanura (Pelobatoidea, Pelodytoidea, and Neobatrachia). Except for Microhylidae, acosmanurans previously described possess limited innovative larval morphologies. Larval carnivory has evolved convergently several times in distant anuran clades and shows structural, behavioral, and functional differences in the known examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

cart.:

Cartilago

for.:

Foramen

lev.:

Levator

m.:

Musculus

mand.:

Mandibulae

proc.:

Processus

prof.:

Profundus

References

  • Ablan D (2008) Official Luxology modo 301 guide. Course Technology, Cengage Learning, Boston

  • Alcala AC (1962) Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 1962:679–726

    Article  Google Scholar 

  • Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109

    Article  Google Scholar 

  • Altig R, McDiarmid RW (1999) Diversity: familial and generic characterizations. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 295–335

    Google Scholar 

  • Altig R, Whiles M, Taylor C (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52:386–395

    Article  Google Scholar 

  • Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N (2013) Developmental origins of a novel gut morphology in frogs. Evol Dev 15:213–223

    Article  PubMed  Google Scholar 

  • Boulenger GA (1896) Descriptions of new batrachians in the British Museum. Ann Mag Nat Hist 6:401–406

    Article  Google Scholar 

  • Bragg AN (1956) Dimorphism and cannibalism in tadpoles of Scaphiopus bombifrons (Amphibia, Salientia). Southwest Nat 1:105–108

    Article  Google Scholar 

  • Bragg AN (1964) Further study of predation and cannibalism in spadefoot tadpoles. Herpetologica 20:17–24

    Google Scholar 

  • Brower AVZ, Schawaraoch V (1996) Three steps of homology assessment. Cladistics 12:265–272

    Google Scholar 

  • Cannatella D (1999) Architecture: cranial and axial musculoskeleton. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago

    Google Scholar 

  • Carroll EJ, Senevirantne AM, Ruibal R (1991) Gastric pepsin in an anuran larva. Dev Growth Differ 33:499–507

    Article  CAS  Google Scholar 

  • Cei JM (1968) Notes on the tadpoles and the breeding ecology of Lepidobatrachus (Amphibia: Ceratophrynidae). Herpetologica 24:141–146

    Google Scholar 

  • Crump ML (1992) Cannibalism in amphibians. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 256–276

    Google Scholar 

  • Das I (1995) Comparative morphology of the gastrointestinal tract in relation to diet in frogs from a locality in south India. Amphibia-Reptilia 16:289–293

    Article  Google Scholar 

  • De Beer GR (1937) The development of the vertebrate skull. The University of Chicago Press, Chicago

    Google Scholar 

  • De Jongh HJ (1968) Functional morphology of the jaw apparatus of larval and metamorphosing Rana temporaria. Neth J Zool 18:1–103

    Article  Google Scholar 

  • De Jongh HJ, Gans C (1969) On the mechanism of respiration in the bullfrog, Rana catesbeiana. J Morphol 127:259–290

    Article  Google Scholar 

  • De Pinna MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394

    Article  Google Scholar 

  • Deban SM, Olson WM (2002) Suction feeding by a tiny predatory tadpole. Nature 420:41–42

    Article  CAS  PubMed  Google Scholar 

  • Dietrich HF, Fontaine AR (1975) A decalcification method for ultrastructure of echinoderm tissues. Stain Technol 50:351–354

    CAS  PubMed  Google Scholar 

  • Dingerkus G, Uhler LD (1977) Enzyme clearing of Alcian Blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232

    CAS  PubMed  Google Scholar 

  • Dodd JM (1950) Ciliary feeding mechanism in anuran larvae. Nature 165:283

    Article  CAS  PubMed  Google Scholar 

  • Drewes RC, Altig R, Howell KM (1989) Tadpoles of three frog species endemic to the forests of the Eastern Arc Mountains, Tanzania. Amphibia-Reptilia 10:435–443

    Article  Google Scholar 

  • Fabrezi M (2011) Heterochrony in growth and development in anurans from the Chaco of South America. Evol Biol 38:390–411

    Article  Google Scholar 

  • Fabrezi M, Lobo F (2009) Hyoid skeleton, its related muscles, and morphological novelties in the frog Lepidobatrachus (Anura, Ceratophryidae). Anat Rec 292:1700–1712

    Article  Google Scholar 

  • Fabrezi M, Quinzio SI (2008) Morphological evolution in Ceratophryinae frogs (Anura, Neobatrachia): the effects of heterochronic changes during larval development and metamorphosis. Zool J Linn Soc 154:752–780

    Article  Google Scholar 

  • Fox S (1990) Opportunistic cannibalism in tadpoles of the Great Basin Spadefoot Toad, Scaphiopus intermontanus. MA Thesis, San Francisco State University

  • Frost DR (2013) Amphibian Species of the World: an Online Reference. Version 5.6 (9 Jan 2013). Accessible at: http://research.amnh.org/herpetology/amphibia/. American Museum of Natural History, New York

  • Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370

    Article  Google Scholar 

  • Fry AE, Kaltenbach JC (1992) Gastrointestinal tract length in two species of anuran tadpoles, Ceratophrys ornata and Rana pipiens. Am Zool 32:23A

    Google Scholar 

  • Fry AE, Kaltenbach JC (1999) Histology and lectin-binding patterns in the digestive tract of the carnivorous larvae of the anuran Ceratophrys ornata. J Morphol 241:19–32

    Article  CAS  PubMed  Google Scholar 

  • Gaupp E (1893) Beitraege zur Morphologie des Schaedels. I. Primordial-Cranium und Kieferbogen von Rana fusca. Morphol Arb 2:275–481

    Google Scholar 

  • Gaupp E (1894) Beitraege zur Morphologie des Schaedels. II. Das Hyo-Branchial-Skelet der Anuren und seine Umwandlung. Morphol Arb 3:389–437

    Google Scholar 

  • Gaupp E (1896) Ecker’s und Wiedersheim’s Anatomie des Frosches. Erste Abteilung, Lehre vom Skelet und vom Muskelsystem. Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Gradwell N (1972) Gill irrigation in Rana catesbeiana. Part I. On the anatomical basis. Can J Zool 50:481–499

    Article  CAS  PubMed  Google Scholar 

  • Griffiths I (1961) The form and function of the foregut in anuran larvae (Amphibia: Salientia) with particular reference to the Manicotto Glandulare. Proc Zool Soc Lond 137:249–283

    Article  Google Scholar 

  • Grosjean S, Vences M, Dubois A (2004) Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frogs, genus Hoplobatrachus (Ranidae). Biol J Linn Soc 81:171–181

    Article  Google Scholar 

  • Haas A (1997) The larval hyobranchial apparatus of discoglossoid frogs: its structure and bearing on the systematics of the Anura (Amphibia: Anura). J Zool Syst Evol Res 53:179–197

    Google Scholar 

  • Haas A (1999) Larval and metamorphic skeletal development in the fast developing frog Pyxicephalus adspersus (Anura, Ranidae). Zoomorphology 119:23–35

    Article  Google Scholar 

  • Haas A (2001) Mandibular arch musculature of anuran tadpoles, with comments on homologies of amphibian jaw muscles. J Morphol 247:1–33

    Google Scholar 

  • Haas A (2003) Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19:23–89

    Google Scholar 

  • Haas A, Hertwig S, Das I (2006) Extreme tadpoles: the morphology of the fossorial megophryid larva, Leptobrachella mjobergi. Zoology 109:26–42

    Article  PubMed  Google Scholar 

  • Haas A, Richards SJ (1998) Correlations of cranial morphology, ecology, and evolution in Australian suctorial tadpoles of the genera Litoria and Nyctimystes (Amphibia: Anura: Hylidae: Pelodryadinae). J Morphol 238:109–141

    Google Scholar 

  • Harris RN (1999) The anuran tadpole: evolution and maintenance. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. The University of Chicago Press, Chicago, IL, pp 279–294

    Google Scholar 

  • Heyer WR (1973) Ecological interaction of frog larvae at a seasonal tropical location in Thailand. J Herpetol 7:337–361

    Article  Google Scholar 

  • Hintze-Podufal C, Schroer H (1989) Aspects of Hymenochirus boettgeri development. Fortschr Zool 35:283–286

    Google Scholar 

  • Inger RF (1985) Tadpoles of the forested regions of Borneo. Fieldiana Zool New Ser 26:1–89

    Google Scholar 

  • Inger RF, Stuebing RB (2005) A field guide to the frogs of Borneo. Natural History Publications (Borneo), Sdn Bhd, Kota Kinabalu

  • Ishizuya-Oka A, Shimozawa A (1987) Development of the connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis. Anat Anz Jena 164:81–93

    CAS  Google Scholar 

  • Iskandar DT (1998) The amphibians of Java and Bali. Bogor

  • Iskandar DT, Arifin U, Rachmansah A (2011) A new frog (Anura, Dicroglossidae) related to Occidozyga semipalmata Smith, 1927, from the eastern Peninsula of Sulawesi, Indonesia. Raffles Bull Zool 59:219–228

    Google Scholar 

  • Jungfer K-H (1996) Reproduction and parental care of the coronated treefrog, Anotheca spinosa (Steindachner, 1864) (Anura: Hylidae). Herpetologica 52:25–32

    Google Scholar 

  • Kaltenbach JC, Fry AE, Colpitts KM, Faszewski EE (2012) Apoptosis in the digestive tract of herbivorous Rana pipiens larvae and carnivorous Ceratophrys ornata larvae: an immunohistochemical study. J Morphol 273:103–108

    Article  PubMed  Google Scholar 

  • Kenny JS (1969) Feeding mechanisms in anuran larvae. J Zool Lond 157:225–246

    Article  Google Scholar 

  • Kleinteich T, Haas A (2006) Cranial musculature in the larva of the caecilian, Ichthyophis kohtaoensis (Lissamphibia: Gymnophiona). J Morphol 268:74–88

    Article  Google Scholar 

  • Kleinteich T, Haas A (2011) The hyal and ventral branchial muscles in caecilian and salamander larvae: homologies and evolution. J Morphol 272:598–613

    Article  PubMed  Google Scholar 

  • Lambertini G (1929) Il manicotto glandulare di Rana esculenta nei suoi aspetti strutturali e nelle sue evoluzioni metamorfiche durante lo sviluppo. Ric Morfol Roma 9:71–88

    Google Scholar 

  • Lavilla EO (1990) The tadpole of Hyla nana (Anura: Hylidae). J Herpetol 24:207–209

    Article  Google Scholar 

  • Lavilla EO, de Sá R (2001) Chondrocranium and visceral skeleton of Atelopus tricolor and Atelophryniscus chrysophorus tadpoles (Anura, Bufonidae). Amphibia-Reptilia 22:167–177

    Article  Google Scholar 

  • Lavilla EO, Fabrezi M (1992) Anatomia craneal de larvas de Lepidobatrachus llanensis y Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zool Lilloana 42:5–11

    Google Scholar 

  • Leong TM, Chou LM (1999) Larval diversity and development in the Singapore Anura (Amphibia). Raffles Bull Zool 47:81–137

    Google Scholar 

  • Malkmus R, Manthey U, Vogel G, Hoffmann P, Kosuch J (2002) Amphibians and Reptiles of Mount Kinabalu (North Borneo). A.R.G. Gantner K.G., Koeltz Scientific Books, Koenigstein

  • McAvoy JW, Dixon KE (1977) Cell proliferation and renewal in the small intestine epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool 202:129–138

    Article  Google Scholar 

  • McDiarmid RW, Altig R (1999) Tadpoles: the biology of anuran larvae. University Chicago Press, Chicago

    Google Scholar 

  • Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:1–14

    Article  Google Scholar 

  • Mulisch M, Welsch U (2010) Romeis-Mikroskopische Technik. Spektrum Akademischer Verlag, Heidelberg

  • Natale GS, Alcalde L, Herrera R, Cajade R, Schaefer EF, Marangoni F, Trudeau VL (2011) Underwater acoustic communication in the macrophagic carnivorous larvae of Ceratophrys ornata (Anura: Ceratophryidae). Acta Zool 92:46–53

    Article  Google Scholar 

  • Orton GL (1953) The systematics of vertebrate larvae. Syst Zool 2:63–75

    Article  Google Scholar 

  • Patterson C (1982) Morphological characters and homology. In: Joysey KA, Friday AE (eds) Problems of phylogenetic reconstruction. Academic Press, New York

    Google Scholar 

  • Petranka JW, Kennedy CA (1999) Pond tadpoles with generalized morphology: is it time to reconsider their functional roles in aquatic communities? Oecologia 120:621–631

    Article  Google Scholar 

  • Pfennig DW (1992) Polyphenism in spadefoot toad tadpoles as a locally adjusted evolutionarily stable strategy. Evolution 46:1408–1420

    Article  Google Scholar 

  • Pomeroy, LV (1981) Developmental polymorphism in the tadpoles of the spadefoot toad Scaphiopus multiplicatus. PhD dissertation. University of California, Riverside

  • Pope CH (1931) Notes on amphibians from Fukien, Hainan, and other parts of China. Bull Am Mus Nat Hist 61:397–610

    Google Scholar 

  • Púgener A, Maglia AM, Trueb L (2003) Revisiting the contribution of larval characters to an analysis of phylogenetic relationships of basal anurans. Zool J Linn Soc 139:129–155

    Article  Google Scholar 

  • Pusey HK (1943) On the head of the liopelmid frog, Ascaphus truei: I. The chrondrocranium, jaws, arches, and muscles of a partly-grown larva. Q J Microsc Sci 84:105–185

    Google Scholar 

  • Pyron AR, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phyl Evol 61:543–583

    Article  Google Scholar 

  • Richter SS (2005) Homologies in phylogenetic analyses—concept and tests. Theory Biosci 124:105–120

    PubMed  Google Scholar 

  • Rieppel O, Kearney M (2002) Similarity. Biol J Linn Soc 75:59–82

    Article  Google Scholar 

  • Roček Z (2003) Larval development and evolutionary origin of the anuran skull. In: Heatwole H, Davies M (eds) Amphibian biology. Surrey Beatty, Sons PTY Limited, Chipping Norton, pp 1877–1995

    Google Scholar 

  • Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F (2007) Global patterns of diversification in the history of modern amphibians. PNAS 104:887–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roelants K, Haas A, Bossuyt F (2011) Anuran radiations and the evolution of tadpole morphospace. PNAS 108:8731–8736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruibal R, Thomas E (1988) The obligate carnivorous larvae of the frog, Lepidobatrachus laevis (Leptodactylidae). Copeia 1988:591–604

    Article  Google Scholar 

  • Satel SL, Wassersug RJ (1981) On the relative sizes of buccal floor depressor and elevator musculature in tadpoles. Copeia 1981:129–137

    Article  Google Scholar 

  • Sheil CA (1999) Osteology and skeletal development of Pyxicephalus adspersus (Anura: Ranidae: Raninae). J Morphol 240:49–75

    Google Scholar 

  • Shi Y-B, Ishizuya-Oka A (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr Top Dev Biol 32:205–235

    Article  CAS  PubMed  Google Scholar 

  • Smith MA (1916) On the frogs of the genus Oxyglossis. J Nat Hist Soc Siam 2:172–175

    Google Scholar 

  • Sokol OM (1962) The tadpole of Hymenochirus boettgeri. Copeia 1962:273–284

    Article  Google Scholar 

  • Sokol OM (1975) The phylogeny of anuran larvae: a new look. Copeia 1975:1–23

    Article  Google Scholar 

  • Sokol OM (1981) The larval chondrocranium of Pelodytes punctatus, with a review of tadpole chondrocrania. J Morphol 169:161–183

    Article  Google Scholar 

  • Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  • Storz BL, Travis J (2007) Temporally dissociated, trait-specific modifications underlie phenotypic polyphenism in Spea multiplicata, which suggests modularity. Sci World J 7:715–726

    Article  Google Scholar 

  • Taylor EH, Elbel RE (1958) Contribution to the herpetology of Thailand. Univ Kans Sci Bull 38:1033–1189

    Google Scholar 

  • Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9:107–119

    Google Scholar 

  • Ueck M (1967) Der Manicotto Glandulare (“Drüsenmagen”) der Anurenlarve. Z wiss Zool 176:173–270

    Google Scholar 

  • Ulloa Kreisel ZE (2002) Caracteriticas morfologicas del tubo digestivo en larvas carnivoras de Lepidobatrachus llanensis (Anura: Leptodactylidae). Acta Zool Lilloana 46:31–38

    Google Scholar 

  • Veeranagoudar DK, Radder RS, Shanbhag BA, Saidapur SK (2009) Jumping behavior of semiterrestrial tadpoles of Indirana beddomii (Günth.): relative importance of tail and body size. J Herpetol 43:680–684

    Article  Google Scholar 

  • Vera Candioti MF (2005) Morphology and feeding in tadpoles of Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zool 86:1–11

    Article  Google Scholar 

  • Vera Candioti MF (2007) Anatomy of anuran tadpoles from lentic water bodies: systematic relevance and correlation with feeding habits. Zootaxa 1600:1–175

    Google Scholar 

  • Vera Candioti MF (2008) Larval anatomy of Andean tadpoles of Telmatobius (Anura: Ceratophryidae) from northwestern Argentina. Zootaxa 1938:40–60

    Google Scholar 

  • Vera Candioti MF, Lavilla EO, Echeverria DD (2004) Feeding mechanisms of two treefrogs, Hyla nana and Scinax nasicus (Anura: Hylidae). J Morph 261:206–224

    Article  CAS  PubMed  Google Scholar 

  • Wassersug RJ (1980) Internal oral features of larvae from eight anuran families: functional, systematic, evolutionary, and ecological considerations. Misc Pub Mus Nat Hist Kans 68:1–146

    Google Scholar 

  • Wassersug R (1984) The Pseudohemisus tadpole: a morphological link between microhylid (Orton type 2) and ranoid (Orton type 4) larvae. Herpetologica 40:138–149

    Google Scholar 

  • Wassersug RJ (1989) What, if anything is a microhylid (Orton type II) tadpole? In: Splechtna H (ed) Trends in vertebrate morphology. G. Fischer, Stuttgart, pp 534–538

    Google Scholar 

  • Wassersug R, Heyer WR (1988) A survey of internal oral features of leptodactylid larvae. Smith Contr Zool 457:1–99

    Article  Google Scholar 

  • Wassersug RJ, Pyburn WF (1987) The biology of the Pe-ret’ toad Otophryne robusta (Microhylidae), with special consideration of its fossorial larva and systematic relationships. Zool J Linn Soc 91:137–169

    Article  Google Scholar 

  • Zhang P, Liang D, Mao RL, Hillis DM, Wake DB, Cannatella DC (2013) Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol 30:1899–1915

    Article  CAS  PubMed  Google Scholar 

  • Ziermann JM, Infante C, Hanken J, Olsson L (2011) Morphology of the cranial skeleton and musculature in the obligate carnivorous tadpole of Lepidobatrachus laevis (Anura: Ceratophryidae). Acta Zool 94:101–112

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Sarawak Forest Department, in particular Datuk Cheong Ek Choon, Director, and Bolhan Budeng, for issuing collecting permits (NPW.907.4–36) and export permits. The Economic Planning Unit, The Prime Minister’s Department, Malaysia, and especially Mrs. Munirah Abd. Manan were supportive in issuing research permit No. 1168 to A. Haas. Sabah Parks provided research permit TS/PTD/5/4, and we thank J. Nais. At the DESY facility, work would not have been possible without unconditional support of F. Beckmann and J. Herzen. We received skillful help from A.M. Vogt with some of the serial sectioning and clearing and staining. We gratefully acknowledge funding of the Volkswagen Foundation, Germany (Grant I/79 405 to AH and ID), Naturhistorisches Museum der Burgergemeinde Bern, Universität Hamburg, and Universiti Malaysia Sarawak. The work at Gunung Mulu National Park was generously supported in many different ways and on several occasions by Brian and Sue Clark and their staff, whom we cannot thank enough. The work of Rolf Beutel and Frank Friedrich for determination of the beetle larvae extracted from O. baluensis tadpoles is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Haas.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, A., Pohlmeyer, J., McLeod, D.S. et al. Extreme tadpoles II: the highly derived larval anatomy of Occidozyga baluensis (Boulenger, 1896), an obligate carnivorous tadpole. Zoomorphology 133, 321–342 (2014). https://doi.org/10.1007/s00435-014-0226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-014-0226-7

Keywords

Navigation