Skip to main content

Bioresponsive Nanomaterials for CNS Disease

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

Diseases of the central nervous system (CNS) affect millions of people worldwide and disease burden is increasing with an aging population. Yet, there are few medicines available to diagnose and treat neurological disorders and progress on developing new medicines has been limited. One major challenge is the narrow therapeutic window of payloads that act in the CNS – significant transport barriers restrict bioavailability yet the CNS is sensitive to toxicity. Bioresponsive nanomaterials can be engineered to activate based on context and encode sophisticated functions. Contexts that activate bioresponsive nanomaterials can be specific to the temporal and spatial dynamics of healthy and pathological biological processes, and thus offer approaches to increase efficacy of payloads while mitigating off-target effects. In this chapter, environment cues specific to CNS diseases or within subcellular compartments will be discussed and examples of bioresponsive nanomaterials that have been engineered to respond to these cues will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D., et al. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 379, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Adibhatla, R. M., & Hatcher, J. F. (2010). Lipid oxidation and peroxidation in CNS health and disease: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 12, 125–169.

    Article  CAS  Google Scholar 

  • Agrawal, M., et al. (2020). Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. Journal of Controlled Release, 327, 235–265.

    Article  CAS  PubMed  Google Scholar 

  • Aguilera, T. A., Olson, E. S., Timmers, M. M., Jiang, T., & Tsien, R. Y. (2009). Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integrative Biology, 1, 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinc, A., et al. (2019). The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 14, 1084–1087.

    Article  CAS  PubMed  Google Scholar 

  • Alberts, B., et al. (2002). Transport from the trans Golgi network to lysosomes. Molecular Biology of the Cell 4th Edition.

    Google Scholar 

  • Anderson, R. E., & Sundt, T. M. (1983). Brain pH in focal cerebral ischemia and the protective effects of barbiturate anesthesia. https://journals.sagepub.com/doi/abs/10.1038/jcbfm.1983.76

  • Anna, R., et al. (2006). Increased brain expression of matrix Metalloproteinase-9 after ischemic and Hemorrhagic human stroke. Stroke, 37, 1399–1406.

    Article  Google Scholar 

  • Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioengineering & Translational Medicine, 1, 10–29.

    Article  Google Scholar 

  • Appelros, P., Stegmayr, B., & Terént, A. (2009). Sex differences in stroke epidemiology. Stroke, 40, 1082–1090.

    Article  PubMed  Google Scholar 

  • Attenello, F. J., et al. (2008). Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: A 10-year institutional experience. Annals of Surgical Oncology, 15, 2887.

    Article  PubMed  Google Scholar 

  • Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., & Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Research, 765, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Badeau, B. A., & DeForest, C. A. (2019). Programming stimuli-responsive behavior into biomaterials. Annual Review of Biomedical Engineering, 21, 241–265.

    Article  CAS  PubMed  Google Scholar 

  • Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A., & DeForest, C. A. (2018). Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nature Chemistry, 10, 251–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basurto-Islas, G., Grundke-Iqbal, I., Tung, Y. C., Liu, F., & Iqbal, K. (2013). Activation of Asparaginyl endopeptidase leads to tau hyperphosphorylation in Alzheimer disease*. The Journal of Biological Chemistry, 288, 17495–17507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevers, M. B., & Neumar, R. W. (2008). Mechanistic role of calpains in postischemic neurodegeneration. The Journal of Cerebral Blood Flow & Metabolism, 28, 655–673.

    Article  CAS  Google Scholar 

  • Bharadwaj, V. N., et al. (2020). Sex-dependent macromolecule and nanoparticle delivery in experimental brain injury. Tissue Engineering. Part A, 26, 688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bing-Qiao, Z., Emiri, T., & Lo Eng, H. (2007). Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke, 38, 748–752.

    Article  Google Scholar 

  • Blum, A. P., et al. (2015). Stimuli-responsive nanomaterials for biomedical applications. Journal of the American Chemical Society, 137, 2140–2154.

    Article  CAS  PubMed  Google Scholar 

  • Bo, C., Cheng, Q., Kai, Y., & Lyden Patrick, D. (2010). Thrombin mediates severe neurovascular injury during ischemia. Stroke, 41, 2348–2352.

    Article  Google Scholar 

  • Bordt, E. A., & Polster, B. M. (2014). NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: A bipartisan affair? Free Radical Biology & Medicine, 76, 34–46.

    Article  CAS  Google Scholar 

  • Carreau, A., Hafny-Rahbi, B. E., Matejuk, A., Grillon, C., & Kieda, C. (2011). Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine, 15, 1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B., et al. (2012). Thrombin activity associated with neuronal damage during acute focal ischemia. The Journal of Neuroscience, 32, 7622–7631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., et al. (2018). Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Frontiers in Cell and Development Biology, 6, 132.

    Article  Google Scholar 

  • Chesler, M. (2003). Regulation and modulation of pH in the brain. Physiological Reviews, 83, 1183–1221.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A. J., & Davis, M. E. (2015). Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proceedings of the National Academy of Sciences, 112, 12486–12491.

    Article  CAS  Google Scholar 

  • Cook, A. B., & Decuzzi, P. (2021). Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano, 15, 2068–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbet, C., & Feron, O. (2017). Tumour acidosis: From the passenger to the driver’s seat. Nature Reviews. Cancer, 17, 577–593.

    Article  CAS  PubMed  Google Scholar 

  • Dall, E., & Brandstetter, H. (2016). Structure and function of legumain in health and disease. Biochimie, 122, 126–150.

    Article  CAS  PubMed  Google Scholar 

  • Daneman, R. (2012). The blood–brain barrier in health and disease. Annals of Neurology, 72, 648–672.

    Article  CAS  PubMed  Google Scholar 

  • Desnoyers, L. R., et al. (2013). Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.3006682

  • Doronina, S. O., et al. (2003). Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnology, 21, 778–784.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, D. I. (1993). Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action. Journal of Antimicrobial Chemotherapy, 31, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard, L., Sevier, C. S., & Bulleid, N. J. (2018). How are proteins reduced in the endoplasmic reticulum? Trends in Biochemical Sciences, 43, 32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellingson, B. M., et al. (2019). pH-weighted molecular MRI in human traumatic brain injury (TBI) using amine proton chemical exchange saturation transfer echoplanar imaging (CEST EPI). NeuroImage Clinical, 22, 101736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Forsyth, P. A., et al. (1999). Gelatinase-a (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. British Journal of Cancer, 79, 1828–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furtado, D., et al. (2018). Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Advanced Materials, 30, 1801362.

    Article  Google Scholar 

  • Gamcsik, M. P., Kasibhatla, M. S., Teeter, S. D., & Colvin, O. M. (2012). Glutathione levels in human tumors. Biomark Biochem Indic Expo Response Susceptibility Chem, 17, 671–691.

    CAS  Google Scholar 

  • Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E., & Zare, R. N. (2012). Drug release from electric-field-responsive nanoparticles. ACS Nano, 6, 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Geng, J., Li, M., Wu, L., Chen, C., & Qu, X. (2012). Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Advanced Healthcare Materials, 1, 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Gerweck, L. E., & Seetharaman, K. (1996). Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 56, 1194–1198.

    CAS  PubMed  Google Scholar 

  • Gidday, J. M., et al. (2005). Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. American Journal of Physiology-Heart and Circulatory Physiology, 289, H558–H568.

    Article  CAS  PubMed  Google Scholar 

  • Gu, G., et al. (2013). PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 34, 196–208.

    Article  PubMed  Google Scholar 

  • Guevara, R., Gianotti, M., Oliver, J., & Roca, P. (2011). Age and sex-related changes in rat brain mitochondrial oxidative status. Experimental Gerontology, 46, 923–928.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., et al. (2018). Thrombin-responsive, brain-targeting nanoparticles for improved stroke therapy. ACS Nano, 12, 8723–8732.

    Article  CAS  PubMed  Google Scholar 

  • Hajipour, M. J., et al. (2021). Sex as an important factor in nanomedicine. Nature Communications, 12, 2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, L., et al. (2019). Systemic delivery of monoclonal antibodies to the central nervous system for brain tumor therapy. Advanced Materials, 31, 1805697.

    Article  Google Scholar 

  • Harris, T. J., von Maltzahn, G., Derfus, A. M., Ruoslahti, E., & Bhatia, S. N. (2006). Proteolytic actuation of nanoparticle self-assembly. Angewandte Chemie, International Edition, 45, 3161–3165.

    Article  CAS  Google Scholar 

  • Harris, R. J., et al. (2018). Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI). Magnetic Resonance in Medicine, 80, 1962–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller, J., Baker, R. W., Gale, R. M., & Rodin, J. O. (1978). Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers—properties and theory. Journal of Applied Polymer Science, 22, 1991–2009.

    Article  CAS  Google Scholar 

  • Hoffman, A. S. (2013). Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Advanced Drug Delivery Reviews, 65, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Horstmann, S., Kalb, P., Koziol, J., Gardner, H., & Wagner, S. (2003). Profiles of matrix Metalloproteinases, their inhibitors, and Laminin in stroke patients. Stroke, 34, 2165–2170.

    Article  PubMed  Google Scholar 

  • Hua, L., et al. (2018). Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics, 8, 5088–5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, G., et al. (2020). PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64 cu-labelled polymers. Nature Biomedical Engineering, 4, 314–324.

    Article  CAS  PubMed  Google Scholar 

  • Hyun, H., et al. (2013). Ischemic brain imaging using fluorescent gold nanoprobes sensitive to reactive oxygen species. Journal of Controlled Release, 170, 352–357.

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki, T., et al. (2010). The Asparaginyl endopeptidase Legumain after experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 30, 1756–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, T., et al. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences, 101, 17867–17872.

    Article  CAS  Google Scholar 

  • Jiang, L., et al. (2013). pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials, 34, 7418–7428.

    Article  CAS  PubMed  Google Scholar 

  • Justicia, C., et al. (2003). Neutrophil infiltration increases matrix Metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. Journal of Cerebral Blood Flow and Metabolism, 23, 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  • Kandell, R. M., Waggoner, L. E., & Kwon, E. J. (2021). Nanomedicine for acute brain injuries: Insight from decades of cancer Nanomedicine. Molecular Pharmaceutics, 18, 522–538.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, M., Sharma, S., Sandhir, R., & Nehru, B. (2019). Temporal changes in physiological and molecular markers in various brain regions following transient global ischemia in rats. Molecular Biology Reports, 46, 6215–6230.

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh, W. M. (2020). Antibody prodrugs for cancer. Expert Opinion on Biological Therapy, 20, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, L., Sandhu, J. K., Harper, M.-E., & Cuperlovic-Culf, M. (2020). Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 10, E1429.

    Article  PubMed  Google Scholar 

  • Khan, A. R., Yang, X., Fu, M., & Zhai, G. (2018). Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 291, 37–64.

    Article  CAS  PubMed  Google Scholar 

  • Kim, A. J., Woodworth, G. F., Boylan, N. J., Suk, J. S., & Hanes, J. (2014). Highly compacted pH-responsive DNA nanoparticles mediate transgene silencing in experimental glioma. Journal of Materials Chemistry B, 2, 8165–8173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblach, S. M., & Faden, A. I. (2005). Proteases in Traumatic Brain Injury. In U. Lendeckel & N. M. Hooper (Eds.), Proteases in the brain (Vol. 3, pp. 79–108). Springer.

    Chapter  Google Scholar 

  • Korenchan, D. E., & Flavell, R. R. (2019). Spatiotemporal pH heterogeneity as a promoter of cancer progression and therapeutic resistance. Cancers, 11, 1026.

    Article  CAS  PubMed Central  Google Scholar 

  • Kudryashev, J. A., Waggoner, L. E., Leng, H. T., Mininni, N. H., & Kwon, E. J. (2020). An activity-based Nanosensor for traumatic brain injury. ACS Sensors, 5, 686–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R., & van der Meel, R. (2019). Lipid nanoparticle Technology for Clinical Translation of siRNA therapeutics. Accounts of Chemical Research, 52, 2435–2444.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, E. J., Lo, J. H., & Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences, 112, 14460–14466.

    Article  CAS  Google Scholar 

  • Lee, H., Lee, K., Kim, I. K., & Park, T. G. (2008). Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials, 29, 4709–4718.

    Article  CAS  PubMed  Google Scholar 

  • Levesque, S., et al. (2010). Reactive microgliosis: Extracellular-calpain and microglia-mediated dopaminergic neurotoxicity. Brain, 133, 808–821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., & Yang, S. (2016). Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circulation, 2, 153–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, H.-R., & Sung, K. C. (2000). Carbopol/pluronic phase change solutions for ophthalmic drug delivery. Journal of Controlled Release, 69, 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Lu, W. (2012). Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opinion on Drug Delivery, 9, 671–686.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Sun, C., Huang, H., Janda, K., & Edgington, T. (2003). Overexpression of Legumain in Tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Research, 63, 2957–2964.

    CAS  PubMed  Google Scholar 

  • Liu, J., Liu, M. C., & Wang, K. K. W. (2008). Calpain in the CNS: From synaptic function to neurotoxicity. Science Signaling, 1, re1–re1.

    Article  PubMed  Google Scholar 

  • Lo, E. H., Wang, X., & Cuzner, M. L. (2002). Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activators and matrix metalloproteinases. Journal of Neuroscience Research, 69, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lo, J. H., Kwon, E. J., Zhang, A. Q., Singhal, P., & Bhatia, S. N. (2016). Comparison of modular PEG incorporation strategies for stabilization of peptide–siRNA Nanocomplexes. Bioconjugate Chemistry, 27, 2323–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín, C., & Bond, J. S. (2008). Proteases: Multifunctional enzymes in life and disease. The Journal of Biological Chemistry, 283, 30433–30437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Aimetti, A. A., Langer, R., & Gu, Z. (2016). Bioresponsive materials. Nature Reviews Materials, 2, 1–17.

    Google Scholar 

  • Lu, Y., et al. (2019a). Microenvironment Remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Advancement of Science, 6, 1801586.

    Google Scholar 

  • Lu, Y., et al. (2019b). Microthrombus-targeting micelles for neurovascular Remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Advanced Materials, 31, 1808361.

    Article  Google Scholar 

  • Lv, W., et al. (2018). Bioengineered Boronic Ester modified dextran polymer nanoparticles as reactive oxygen species responsive Nanocarrier for ischemic stroke treatment. ACS Nano, 12, 5417–5426.

    Article  CAS  PubMed  Google Scholar 

  • Lyass, O., Hubert, A., & Gabizon, A. A. (2001). Phase I study of Doxil-cisplatin combination chemotherapy in patients with advanced malignancies. Clinical Cancer Research, 7, 3040–3046.

    CAS  PubMed  Google Scholar 

  • Ma, L., Shen, Y.-Q., Khatri, H. P., & Schachner, M. (2014). The Asparaginyl endopeptidase Legumain is essential for functional recovery after spinal cord injury in adult zebrafish. PLoS One, 9.

    Google Scholar 

  • MacKay, J. A., et al. (2008). HIV TAT peptide modifies the distribution of DNA nanolipoparticles following convection-enhanced delivery. Molecular Therapy, 16, 893–900.

    Article  CAS  PubMed  Google Scholar 

  • Malorni, W., Campesi, I., Straface, E., Vella, S., & Franconi, F. (2007). Redox features of the cell: A gender perspective. Antioxidants & Redox Signaling, 9, 1779–1802.

    Article  CAS  Google Scholar 

  • Manoharan, S., et al. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxidative Medicine and Cellular Longevity, 8590578(2016).

    Google Scholar 

  • Mitchell, M. J., et al. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20, 101–124.

    Article  CAS  PubMed  Google Scholar 

  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Nance, E. A., et al. (2012). A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Science Translational Medicine, 4, 149ra119–149ra119.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Riordan, L. S., Laughlin, K. M., & Lowry, P. J. (2016). In vitro physiological performance factors of a catalase-based biosensor for real-time electrochemical detection of brain hydrogen peroxide in freely-moving animals. Analytical Methods, 8, 7614–7622.

    Article  Google Scholar 

  • Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polack, F. P., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. The New England Journal of Medicine, 383, 2603–2615.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, B. P., et al. (2014). Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nature Materials, 13, 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quader, S., et al. (2021). Supramolecularly enabled pH- triggered drug action at tumor microenvironment potentiates nanomedicine efficacy against glioblastoma. Biomaterials, 267, 120463.

    Article  CAS  PubMed  Google Scholar 

  • Rajkovic, O., et al. (2019). Reactive oxygen species-responsive nanoparticles for the treatment of ischemic stroke. Advances in Therapy, 2, 1900038.

    Article  Google Scholar 

  • Ramírez-García, P. D., et al. (2019). A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nature Nanotechnology, 14, 1150–1159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews. Cancer, 3, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings, N. D., et al. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 46, D624–D632.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., et al. (2020). Increased cross-linking micelle retention in the brain of Alzheimer’s disease mice by elevated asparagine endopeptidase protease responsive aggregation. Biomaterials Science, 8, 6533–6544.

    Article  CAS  PubMed  Google Scholar 

  • Rizwan, M., et al. (2017). pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers, 9, 137.

    Article  PubMed Central  Google Scholar 

  • Rodrigo, R., et al. (2013). Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS & Neurological Disorders Drug Targets, 12, 698–714.

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez, A., Egea-Guerrero, J. J., Murillo-Cabezas, F., & Carrillo-Vico, A. (2014). Oxidative stress in traumatic brain injury. Current Medicinal Chemistry, 21, 1201–1211.

    Article  PubMed  Google Scholar 

  • Rosenberg, G. A. (2009). Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurology, 8, 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, S., et al. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 37, 425–435.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, S., et al. (2016). Increased gold nanoparticle retention in brain Tumors by in situ enzyme-induced aggregation. ACS Nano, 10, 10086–10098.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, S., et al. (2018). Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier Transcytosis and programmed glioma targeting delivery. Advanced Functional Materials, 28, 1802227.

    Article  Google Scholar 

  • Saatman, K. E., Creed, J., & Raghupathi, R. (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 7, 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safra, T., et al. (2000). Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Annals of Oncology, 11, 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., et al. (2006). Neutrophil elastase and cancer. Surgical Oncology, 15, 217–222.

    Article  PubMed  Google Scholar 

  • Selakovic, V., Korenic, A., & Radenovic, L. (2011). Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. International Journal of Developmental Neuroscience, 29, 645–654.

    Article  CAS  PubMed  Google Scholar 

  • Selvin, P. R. (2000). The renaissance of fluorescence resonance energy transfer. Nature Structural Biology, 7, 730–734.

    Article  CAS  PubMed  Google Scholar 

  • Semple, B. D., Trivedi, A., Gimlin, K., & Noble-Haeusslein, L. J. (2015). Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiology of Disease, 74, 263–280.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews. Cancer, 17, 20–37.

    Article  CAS  PubMed  Google Scholar 

  • Siesjö, B. K. (1992). Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. Journal of Neurosurgery, 77, 169–184.

    Article  PubMed  Google Scholar 

  • Simon, D. W., et al. (2017a). The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews. Neurology, 13, 171–191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon, D., et al. (2017b). Plasma matrix metalloproteinase-9 levels predict intensive care unit mortality early after severe traumatic brain injury. Brain Injury, 31, 390–395.

    Article  PubMed  Google Scholar 

  • Simpkins, J. W., & Dykens, J. A. (2008). Mitochondrial mechanisms of estrogen neuroprotection. Brain Research Reviews, 57, 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. L., Andrus, P. K., Zhang, J.-R., & Hall, E. D. (1994). Direct measurement of hydroxyl radicals, lipid peroxidation, and blood–brain barrier disruption following unilateral cortical impact head injury in the rat. Journal of Neurotrauma, 11, 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Stowe, A. M., et al. (2009). Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiology of Disease, 35, 82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svirskis, D., Travas-Sejdic, J., Rodgers, A., & Garg, S. (2010). Electrochemically controlled drug delivery based on intrinsically conducting polymers. Journal of Controlled Release, 146, 6–15.

    Article  CAS  PubMed  Google Scholar 

  • Tejima, E., et al. (2007). Astrocytic induction of matrix Metalloproteinase-9 and Edema in brain Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 27, 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Nortje, J., Al-Rawi, P. G., Hutchinson, P. J., & Gupta, A. K. (2013). Extracellular brain Ph with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 33, 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Tóth, M. O., et al. (2020). Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology, 9, E460.

    Article  Google Scholar 

  • Tower, J., Pomatto, L. C. D., & Davies, K. J. A. (2020). Sex differences in the response to oxidative and proteolytic stress. Redox Biology, 31, 101488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vafadari, B., Salamian, A., & Kaczmarek, L. (2016). MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. Journal of Neurochemistry, 139, 91–114.

    Article  CAS  PubMed  Google Scholar 

  • Vilalta, A., et al. (2008). Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Medicine, 34, 1384–1392.

    Article  CAS  PubMed  Google Scholar 

  • Vilalta, A., et al. (2009). Brain contusions induce a strong local overexpression of MMP-9. Results of a pilot study. In H.-J. Steiger (Ed.), Acta neurochirurgica supplements (pp. 415–419). Springer. https://doi.org/10.1007/978-3-211-85578-2_81

    Chapter  Google Scholar 

  • Wang, M., Wang, T., Liu, S., Yoshida, D., & Teramoto, A. (2003). The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades. Brain Tumor Pathology, 20, 65–72.

    Article  PubMed  Google Scholar 

  • Wang, Y., et al. (2015). A prodrug-type, MMP-2-targeting Nanoprobe for tumor detection and imaging. Theranostics, 5, 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., et al. (2016). Electroresponsive nanoparticles improve Antiseizure effect of phenytoin in generalized tonic-Clonic seizures. Neurotherapeutics, 13, 603–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: A perfect storm for cancer progression. Nature Reviews. Cancer, 11, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Whitley, M. J., et al. (2016). A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Science Translational Medicine, 8, 320ra4–320ra4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, C., et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences, 108, 2426–2431.

    Article  CAS  Google Scholar 

  • Wood, H. (2018). FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nature Reviews. Neurology, 14, 570–570.

    PubMed  Google Scholar 

  • Wood, T., & Nance, E. (2019). Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioengineering, 3, 040901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134, 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., et al. (2020). Sequential targeting in crosslinking Nanotheranostics for tackling the multibarriers of brain Tumors. Advanced Materials, 32, 1903759.

    Article  CAS  Google Scholar 

  • Xi, G., Reiser, G., & Keep, R. F. (2002). The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? Journal of Neurochemistry, 84, 3–9.

    Article  Google Scholar 

  • Xu, J., et al. (2019). Sequentially site-specific delivery of Thrombolytics and Neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano, 13, 8577–8588.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., et al. (2016). Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomaterialia, 46, 177–190.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., et al. (2019). Reactive oxygen species play a biphasic role in brain ischemia. Journal of Investigative Surgery, 32, 97–102.

    Article  PubMed  Google Scholar 

  • Yokota, H., et al. (2000). Measurements of cortical cellular pH by intracranial tonometer in severe head injury. Critical Care Medicine, 28, 3275–3280.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, D., et al. (2017). Core-cross-linked nanoparticles reduce Neuroinflammation and improve outcome in a mouse model of traumatic brain injury. ACS Nano, 11, 8600–8611.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y. J., et al. (2011). Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Science Translational Medicine, 3, 84ra44–84ra44.

    Article  PubMed  Google Scholar 

  • Zagni, E., Simoni, L., & Colombo, D. (2016). Sex and gender differences in central nervous system-related disorders. Journal of Neuroscience, 2016, 1–13.

    Article  Google Scholar 

  • Zhang, Z., et al. (2009). Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis, 14, 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.-X., Eden, H. S., & Chen, X. (2012). Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. Journal of Controlled Release, 159, 2–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., et al. (2020). Autocatalytic delivery of brain tumor–targeting, size-shrinkable nanoparticles for treatment of breast cancer brain metastases. Advanced Functional Materials, 30, 1910651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., et al. (2021). Reactive oxide species-scavenging lipid-polymer nanoparticles for neuroprotection after spinal cord injury. Applied Materials Today, 24, 101109.

    Article  Google Scholar 

  • Zhao, B.-Q., et al. (2006). Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Medicine, 12, 441–445.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., et al. (2019). ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Advanced Materials, 31, 1903277.

    Article  Google Scholar 

  • Zhou, J., Zhang, L., & Tian, Y. (2016). Micro electrochemical pH sensor applicable for real-time Ratiometric monitoring of pH values in rat brains. Analytical Chemistry, 88, 2113–2118.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., et al. (2020). Targeted delivery of secretory Promelittin via novel poly(lactone-co-β-amino ester) nanoparticles for treatment of breast cancer brain metastases. Advancement of Science, 7, 1901866.

    CAS  Google Scholar 

  • Zou, Y., et al. (2020). Single siRNA Nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Advanced Materials, 32, 2000416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester J. Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kudryashev, J.A., Madias, M.I., Kwon, E.J. (2022). Bioresponsive Nanomaterials for CNS Disease. In: Nance, E. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11409-0_5

Download citation

Publish with us

Policies and ethics