Skip to main content

Fast Automatic Bayesian Cubature Using Sobol’ Sampling

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Abstract

Automatic cubatures approximate integrals to user-specified error tolerances. For high dimensional problems, it is difficult to adaptively change the sampling pattern to focus on peaks because peaks can hide more easily in high dimensional space. But, one can automatically determine the sample size, n, given a reasonable, fixed sampling pattern. This approach is pursued in Jagadeeswaran and Hickernell, Stat. Comput., 29:1214–1229, 2019, where a Bayesian perspective is used to construct a credible interval for the integral, and the computation is terminated when the half-width of the interval is no greater than the required error tolerance. Our earlier work employs integration lattice sampling, and the computations are expedited by the fast Fourier transform because the covariance kernels for the Gaussian process prior on the integrand are chosen to be shift-invariant. In this chapter, we extend our fast automatic Bayesian cubature to digital net sampling via digitally shift-invariant covariance kernels and fast Walsh transforms. Our algorithm is implemented in the MATLAB Guaranteed Automatic Integration Library (GAIL) and the QMCPy Python library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The presence of 1/n in the eigenvalue-eigenvector decomposition arises from the assumption that the first column of \(\textsf{V}\) is \({\boldsymbol{1}}\). It could be removed by assuming that the first column of \(\textsf{V}\) is \({\boldsymbol{1}}/\sqrt{n}\). The superscript H denotes the complex conjugate transpose [2].

References

  1. Beckers, M., Haegemans, A.: Transformation of integrands for lattice rules. In: Espelid, T.O., Genz, A.C. (eds.) Numerical Integration: Recent Developments, Software and Applications, pp. 329–340. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  2. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, Princeton and Oxford (2009)

    Book  MATH  Google Scholar 

  3. Briol, F.X., Oates, C.J., Girolami, M., Osborne, M.A., Sejdinovic, D.: Probabilistic integration: a role in statistical computation? Statist. Sci. 34, 1–22 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, L.A., Li, D., Jagadeeswaran, R., Tong, X., Zhang, K., Zhang, Y., Zhou, X.: GAIL: Guaranteed Automatic Integration Library (versions 1.0–2.3.2). MATLAB software (2021). http://gailgithub.github.io/GAIL_Dev/. https://doi.org/10.5281/zenodo.4018189

  5. Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M., Sorokin, A.: QMCPy: a quasi-Monte Carlo Python library (2020). https://doi.org/10.5281/zenodo.3964489. https://qmcsoftware.github.io/QMCSoftware/

  6. Cristea, L.L., Dick, J., Leobacher, G., Pillichshammer, F.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105, 413–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaconis, P.: Bayesian numerical analysis. In: Gupta, S.S., Berger, J.O. (eds.) Statistical Decision Theory and Related Topics IV, Papers from the 4th Purdue Symposium, West Lafayette, Indiana 1986, vol. 1, pp. 163–175. Springer, New York (1988)

    Google Scholar 

  8. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  9. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput. Graph. Statist. 1, 141–150 (1992)

    Google Scholar 

  10. Glasserman, P.: Monte Carlo Methods in Financial Engineering, Applications of Mathematics, vol. 53. Springer, New York (2004)

    MATH  Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  12. Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using lattice sampling. Stat. Comput. 29, 1215–1229 (2019). https://doi.org/10.1007/s11222-019-09895-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Keister, B.D.: Multidimensional quadrature algorithms. Comput. Phys. 10, 119–122 (1996). https://doi.org/10.1063/1.168565

    Article  MathSciNet  Google Scholar 

  14. Keller, A.: Quasi-Monte Carlo image synthesis in a nutshell. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 213–249. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  15. Laurie, D.: Periodizing transformations for numerical integration. J. Comput. Appl. Math. 66, 337–344 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matoušek, J.: On the \(L_2\)-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)

    Article  MATH  Google Scholar 

  17. Niederreiter, H., Xing, C.: Rational Points on Curves over Finite Fields: Theory and Applications. No. 285 in London Mathematical Society Lecture Note series. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Uniform Distribution and Quasi-Monte Carlo Methods (2013)

    Google Scholar 

  19. O’Hagan, A.: Bayes-Hermite quadrature. J. Statist. Plann. Inference 29, 245–260 (1991). https://doi.org/10.1016/0378-3758(91)90002-V

    Article  MathSciNet  MATH  Google Scholar 

  20. Rasmussen, C.E., Ghahramani, Z.: Bayesian Monte Carlo. In: Thrun, S., Saul, L.K., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 489–496. MIT Press (2003)

    Google Scholar 

  21. Rathinavel, J.: Fast automatic Bayesian cubature using matching kernels and designs. Ph.D. thesis, Illinois Institute of Technology, Chicago (2019). www.math.iit.edu

  22. Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, F. (eds.) Numerical Integration IV, no. 112 in International Series of Numerical Mathematics, pp. 359–373. Birkhäuser, Basel (1993)

    Google Scholar 

  23. Sidi, A.: Further extension of a class of periodizing variable transformations for numerical integration. J. Comput. Appl. Math. 221, 132–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7, 86–112 (1967)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Pierre L’Ecuyer for his friendship and many fruitful and enjoyable discussions on Monte Carlo methods. Thanks to the referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathinavel Jagadeeswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagadeeswaran, R., Hickernell, F.J. (2022). Fast Automatic Bayesian Cubature Using Sobol’ Sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_15

Download citation

Publish with us

Policies and ethics