Skip to main content

Cardiac PET/MR Basics

  • Chapter
  • First Online:
FDG-PET/CT and PET/MR in Cardiovascular Diseases
  • 322 Accesses

Abstract

The past decade has seen the emergence of hybrid PET/MR scanners in the pre-clinical and clinical environments, offering new imaging opportunities in various areas of application and organ systems. Well-established in the research setting, PET/MR is now entering the realm of clinical applications, with the potential to provide unique insights into numerous diseases and biological processes. The hybridization of PET and MRI as a simultaneous imaging modality came with challenges and opportunities, ranging from the development of new instrumentation to novel approaches for image acquisition and quantification. For instance, PET/MR required a complete redesign of PET scintillation detectors and front-end electronics to permit operation within the MR environment. New approaches to attenuation correction were needed for PET/MR since MRI does not directly provide information on tissue attenuation properties. PET/MR also offers the opportunity to develop novel algorithms for PET motion correction, leveraging the unique ability of MRI to measure organ motion with high spatiotemporal resolution. This article provides a summary of the challenges and opportunities associated with PET/MR technology, with a particular focus placed on cardiac applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43(1):60–7. https://doi.org/10.1053/j.semnuclmed.2012.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med. 2013;43(1):30–44. https://doi.org/10.1053/j.semnuclmed.2012.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alpert NM, et al. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One. 2018;13(1):e0190968.

    Article  Google Scholar 

  4. Pelletier-Galarneau M, et al. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur J Nucl Med Mol Imaging. 2021;48(2):414–20. https://doi.org/10.1007/s00259-020-04878-9.

    Article  CAS  PubMed  Google Scholar 

  5. Alpert NM, et al. In-vivo imaging of mitochondrial depolarization of myocardium with positron emission tomography and a proton gradient uncoupler. Front Physiol. 2020;11:11–491. https://doi.org/10.3389/fphys.2020.00491.

    Article  Google Scholar 

  6. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60(4):R115–54. https://doi.org/10.1088/0031-9155/60/4/R115.

    Article  PubMed  Google Scholar 

  7. Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging. 2009;36(S1):86–92. https://doi.org/10.1007/s00259-008-1008-6.

    Article  Google Scholar 

  8. Renker D. New trends on photodetectors. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2007;571(1–2):1–6. https://doi.org/10.1016/j.nima.2006.10.016.

    Article  CAS  Google Scholar 

  9. Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng. 2011;39(4):1358–77. https://doi.org/10.1007/s10439-011-0266-9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 2003;50(5):1683–5. https://doi.org/10.1109/TNS.2003.817375.

    Article  CAS  Google Scholar 

  11. Zaidi H, et al. Design and performance evaluation of a whole-body ingenuity TF PET–MRI system. Phys Med Biol. 2011;56(10):3091–106. https://doi.org/10.1088/0031-9155/56/10/013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delso G, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22. https://doi.org/10.2967/jnumed.111.092726.

    Article  PubMed  Google Scholar 

  13. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system: PET performance measurements of the GE SIGNA PET/MR. Med Phys. 2016;43(5):2334–43. https://doi.org/10.1118/1.4945416.

    Article  PubMed  Google Scholar 

  14. Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35(8):1907–14. https://doi.org/10.1109/TMI.2016.2537811.

    Article  PubMed  Google Scholar 

  15. Chen S, et al. NEMA NU2-2012 performance measurements of the united imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48(6):1726–35. https://doi.org/10.1007/s00259-020-05135-9.

    Article  CAS  PubMed  Google Scholar 

  16. Pichler BJ, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47(4):639–47.

    PubMed  Google Scholar 

  17. España S, Fraile LM, Herraiz JL, Udías JM, Desco M, Vaquero JJ. Performance evaluation of SiPM photodetectors for PET imaging in the presence of magnetic fields. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2010;613(2):308–16. https://doi.org/10.1016/j.nima.2009.11.066.

    Article  CAS  Google Scholar 

  18. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33(3):166–79. https://doi.org/10.1053/snuc.2003.127307.

    Article  PubMed  Google Scholar 

  19. Martinez-Möller A, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6. https://doi.org/10.2967/jnumed.108.054726.

    Article  PubMed  Google Scholar 

  20. Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Phys Biol Med. 2013;26(1):81–98. https://doi.org/10.1007/s10334-012-0334-7.

    Article  Google Scholar 

  21. Samarin A, et al. PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39(7):1154–60. https://doi.org/10.1007/s00259-012-2113-0.

    Article  PubMed  Google Scholar 

  22. Schulz V, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38(1):138–52. https://doi.org/10.1007/s00259-010-1603-1.

    Article  CAS  PubMed  Google Scholar 

  23. Robson PM, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging. 2017;10(10 Part A):1165–79. https://doi.org/10.1016/j.jcmg.2017.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, El Fakhri G. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci. 2013;60(5):3373–82. https://doi.org/10.1109/TNS.2013.2278624.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sekine T, et al. Clinical evaluation of zero-Echo-time attenuation correction for brain 18 F-FDG PET/MRI: comparison with atlas attenuation correction. J Nucl Med. 2016;57(12):1927–32. https://doi.org/10.2967/jnumed.116.175398.

    Article  CAS  PubMed  Google Scholar 

  26. Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-Echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56(3):423–9. https://doi.org/10.2967/jnumed.114.146308.

    Article  PubMed  Google Scholar 

  27. Juttukonda MR, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. Neuroimage. 2015;112:160–8. https://doi.org/10.1016/j.neuroimage.2015.03.009.

    Article  PubMed  Google Scholar 

  28. Han PK, et al. MR-based PET attenuation correction using a combined ultrashort echo time/multi-echo Dixon acquisition. Med Phys. 2020;47(7):3064–77. https://doi.org/10.1002/mp.14180.

    Article  CAS  PubMed  Google Scholar 

  29. Leynes AP, et al. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys. 2017;44(3):902–13. https://doi.org/10.1002/mp.12122.

    Article  CAS  PubMed  Google Scholar 

  30. Izquierdo-Garcia D, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55(11):1825–30. https://doi.org/10.2967/jnumed.113.136341.

    Article  PubMed  Google Scholar 

  31. Delso G, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55(5):780–5. https://doi.org/10.2967/jnumed.113.130880.

    Article  PubMed  Google Scholar 

  32. Hofmann M, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9. https://doi.org/10.2967/jnumed.110.078949.

    Article  PubMed  Google Scholar 

  33. Paulus DH, et al. Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56(7):1061–6. https://doi.org/10.2967/jnumed.115.156000.

    Article  PubMed  Google Scholar 

  34. Ladefoged CN, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59. https://doi.org/10.1016/j.neuroimage.2016.12.010.

    Article  PubMed  Google Scholar 

  35. Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR Imaging. PET Clin. 2016;11(2):129–49. https://doi.org/10.1016/j.cpet.2015.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Torrado-Carvajal A, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60(3):429–35. https://doi.org/10.2967/jnumed.118.209288.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leynes AP, et al. Zero-Echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59(5):852–8. https://doi.org/10.2967/jnumed.117.198051.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gong K, Han PK, Johnson KA, El Fakhri G, Ma C, Li Q. Attenuation correction using deep learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging. Eur J Nucl Med Mol Imaging. 2021;48(5):1351–61. https://doi.org/10.1007/s00259-020-05061-w.

    Article  CAS  PubMed  Google Scholar 

  39. Spuhler KD, Gardus J, Gao Y, DeLorenzo C, Parsey R, Huang C. Synthesis of patient-specific transmission data for PET attenuation correction for PET/MRI neuroimaging using a convolutional neural network. J Nucl Med. 2019;60(4):555–60. https://doi.org/10.2967/jnumed.118.214320.

    Article  CAS  PubMed  Google Scholar 

  40. Pozaruk A, et al. Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging. Eur J Nucl Med Mol Imaging. 2021;48(1):9–20. https://doi.org/10.1007/s00259-020-04816-9.

    Article  PubMed  Google Scholar 

  41. Grafe H, et al. Evaluation of improved attenuation correction in whole-body PET/MR on patients with bone metastasis using various radiotracers. Eur J Nucl Med Mol Imaging. 2020;47(10):2269–79. https://doi.org/10.1007/s00259-020-04738-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18(5):393–403. https://doi.org/10.1109/42.774167.

    Article  CAS  PubMed  Google Scholar 

  43. Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging. 2013;32(2):237–46. https://doi.org/10.1109/TMI.2012.2220376.

    Article  PubMed  Google Scholar 

  44. Lindemann ME, Oehmigen M, Blumhagen JO, Gratz M, Quick HH. MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys. 2017;44(9):4559–72. https://doi.org/10.1002/mp.12449.

    Article  PubMed  Google Scholar 

  45. Eldib M, Bini J, Faul DD, Oesingmann N, Tsoumpas C, Fayad ZA. Attenuation correction for magnetic resonance coils in combined PET/MR imaging. PET Clin. 2016;11(2):151–60. https://doi.org/10.1016/j.cpet.2015.10.004.

    Article  PubMed  Google Scholar 

  46. Kartmann R, et al. Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils: AC of flexible RF surface coils. Med Phys. 2013;40(8):082301. https://doi.org/10.1118/1.4812685.

    Article  PubMed  Google Scholar 

  47. Klein GJ, Reutter RW, Huesman RH. Four-dimensional affine registration models for respiratory-gated PET. IEEE Trans Nucl Sci. 2002;48(3):756–60.

    Article  Google Scholar 

  48. Rogers WJ, et al. Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation. 1991;84(2):721–31.

    Article  Google Scholar 

  49. Fisher M, von Schulthess G, Higgins C. Multiphasic cardiac magnetic resonance imaging: normal regional left ventricular wall thickening. Am J Roentgenol. 1985;145(1):27–30. https://doi.org/10.2214/ajr.145.1.27.

    Article  CAS  Google Scholar 

  50. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21.

    Article  Google Scholar 

  51. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45(6):1029–39.

    PubMed  Google Scholar 

  52. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45(3):212–23. https://doi.org/10.1053/j.semnuclmed.2015.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Munoz C, Kolbitsch C, Reader AJ, Marsden P, Schaeffter T, Prieto C. MR-based cardiac and respiratory motion-compensation techniques for PET-MR imaging. PET Clin. 2016;11(2):179–91. https://doi.org/10.1016/j.cpet.2015.09.004.

    Article  PubMed  Google Scholar 

  54. Catana C. PET/MRI: motion correction. In: Iagaru A, Hope T, Veit-Haibach P, editors. PET/MRI in oncology: current clinical applications. Cham: Springer International; 2018. p. 77–96. https://doi.org/10.1007/978-3-319-68517-5_5.

    Chapter  Google Scholar 

  55. Lalush DS. Magnetic resonance–derived improvements in PET imaging. Magn Reson Imaging Clin. 2017;25(2):257–72. https://doi.org/10.1016/j.mric.2016.12.002.

    Article  Google Scholar 

  56. Rakvongthai Y, Fakhri GE. Magnetic resonance–based motion correction for quantitative PET in simultaneous PET-MR imaging. PET Clin. 2017;12(3):321–7. https://doi.org/10.1016/j.cpet.2017.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. Philos Trans A Soc Math Phys Eng Sci. 2021;379(2204):20200207. https://doi.org/10.1098/rsta.2020.0207.

    Article  Google Scholar 

  58. Catana C, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52(1):154–61.

    Article  Google Scholar 

  59. Huang C, et al. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies. Neuroimage. 2014;91:129–37.

    Article  Google Scholar 

  60. Chun SY, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53(8):1284–91.

    Article  Google Scholar 

  61. Guerin B, et al. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging. Med Phys. 2011;38:3025.

    Article  CAS  Google Scholar 

  62. Furst S, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56(2):261–9.

    Article  Google Scholar 

  63. Petibon Y, et al. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys. 2014;41(4):042503. https://doi.org/10.1118/1.4868458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petibon Y, et al. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR. Phys Med Biol. 2016;62(2):326.

    Article  Google Scholar 

  65. Rank CM, et al. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys. 2016;43(12):6234–45. https://doi.org/10.1118/1.4966128.

    Article  PubMed  Google Scholar 

  66. Fuin N, et al. Concurrent respiratory motion correction of abdominal PET and dynamic contrast-enhanced–MRI using a compressed sensing approach. J Nucl Med. 2018;59(9):1474–9. https://doi.org/10.2967/jnumed.117.203943.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dutta J, Huang C, Li Q, El Fakhri G. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR. Med Phys. 2015;42(7):4227–40.

    Article  Google Scholar 

  68. Fayad H, Schmidt H, Wuerslin C, Visvikis D. Reconstruction-incorporated respiratory motion correction in clinical simultaneous PET/MR imaging for oncology applications. J Nucl Med. 2015;56(6):884–9.

    Article  Google Scholar 

  69. Grimm R, et al. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal. 2015;19(1):110–20.

    Article  Google Scholar 

  70. Wang X, Rahmim A, Tang J. MRI-assisted dual motion correction for myocardial perfusion defect detection in PET imaging. Med Phys. 2017;44(9):4536–47. https://doi.org/10.1002/mp.12429.

    Article  PubMed  Google Scholar 

  71. Petibon Y, et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys Med Biol. 2013;58(7):2085–102. https://doi.org/10.1088/0031-9155/58/7/2085.

    Article  CAS  PubMed  Google Scholar 

  72. Küstner T, et al. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal. 2017;42:129–44. https://doi.org/10.1016/j.media.2017.08.002.

    Article  PubMed  Google Scholar 

  73. Huang C, et al. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: phantom and patient studies. Med Phys. 2015;42(2):1087–97.

    Article  Google Scholar 

  74. Robson PM, et al. Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Phys Med Biol. 2018;63(22):225011. https://doi.org/10.1088/1361-6560/aaea97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kolbitsch C, et al. Cardiac and respiratory motion correction for simultaneous cardiac PET/MR. J Nucl Med. 2017;58(5):846–52. https://doi.org/10.2967/jnumed.115.171728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Petibon Y, El Fakhri G, Nezafat R, Johnson N, Brady T, Ouyang J. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study. Phys Med Biol. 2014;59(5):1203–22. https://doi.org/10.1088/0031-9155/59/5/1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Munoz C, et al. Motion-corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency. Magn Reson Med. 2018;79(1):339–50. https://doi.org/10.1002/mrm.26690.

    Article  CAS  PubMed  Google Scholar 

  78. Munoz C, Neji R, Kunze KP, Nekolla SG, Botnar RM, Prieto C. Respiratory- and cardiac motion-corrected simultaneous whole-heart PET and dual phase coronary MR angiography. Magn Reson Med. 2019;81(3):1671–84. https://doi.org/10.1002/mrm.27517.

    Article  PubMed  Google Scholar 

  79. Mayer J, Jin Y, Wurster T-H, Makowski MR, Kolbitsch C. Evaluation of synergistic image registration for motion-corrected coronary NaF-PET-MR. Philos Trans A Soc Math Phys Eng Sci. 2021;379(2200):20200202. https://doi.org/10.1098/rsta.2020.0202.

    Article  CAS  Google Scholar 

  80. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171(3):841–5. https://doi.org/10.1148/radiology.171.3.2717762.

    Article  CAS  PubMed  Google Scholar 

  81. Petibon Y, Sun T, Han PK, Ma C, Fakhri GE, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18 F-FDG imaging. Phys Med Biol. 2019;64(19):195009. https://doi.org/10.1088/1361-6560/ab39c2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Petibon Y, et al. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR. Phys Med Biol. 2017;62(2):326–43. https://doi.org/10.1088/1361-6560/aa5087.

    Article  PubMed  Google Scholar 

  83. Würslin C, et al. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54(3):464–71. https://doi.org/10.2967/jnumed.112.105296.

    Article  CAS  PubMed  Google Scholar 

  84. Büther F, et al. List mode-driven cardiac and respiratory gating in pet. J Nucl Med. 2009;50(5):674–81.

    Article  Google Scholar 

  85. Qiao F, Pan TS, Clark JWJ, Mawlawi OR. A motion-incorporated reconstruction method for gated PET studies. Phys Med Biol. 2006;51:3769–83.

    Article  Google Scholar 

  86. Lamare F, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol. 2007;52(17):5187–204. https://doi.org/10.1088/0031-9155/52/17/006.

    Article  CAS  PubMed  Google Scholar 

  87. Nekolla SG, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18 F-BMS-747158-02: comparison to 13 N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119(17):2333–42. https://doi.org/10.1161/CIRCULATIONAHA.108.797761.

    Article  CAS  PubMed  Google Scholar 

  88. Marin T, et al. Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Phys Med Biol. 2020;65(23):235022. https://doi.org/10.1088/1361-6560/abb31d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spangler-Bickell MG, Deller TW, Bettinardi V, Jansen F. Ultra-fast list-mode reconstruction of short PET frames and example applications. J Nucl Med. 2021;62(2):287–92. https://doi.org/10.2967/jnumed.120.245597.

    Article  PubMed  Google Scholar 

  90. Lu Y, et al. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Phys Med Biol. 2019;64(6):065002. https://doi.org/10.1088/1361-6560/ab02c2.

    Article  CAS  PubMed  Google Scholar 

  91. Sun T, et al. Body motion detection and correction in cardiac PET: phantom and human studies. Med Phys. 2019;46(11):4898–906. https://doi.org/10.1002/mp.13815.

    Article  PubMed  Google Scholar 

  92. Martin O, et al. PET/MRI versus PET/CT for whole-body staging: results from a single-center observational study on 1,003 sequential examinations. J Nucl Med. 2020;61(8):1131–6. https://doi.org/10.2967/jnumed.119.233940.

    Article  CAS  PubMed  Google Scholar 

  93. Sher AC, et al. Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. Am J Roentgenol. 2016;206(3):623–31. https://doi.org/10.2214/AJR.15.15083.

    Article  Google Scholar 

  94. Gatidis S, Bender B, Reimold M, Schäfer JF. PET/MRI in children. Eur J Radiol. 2017;94:A64–70. https://doi.org/10.1016/j.ejrad.2017.01.018.

    Article  PubMed  Google Scholar 

  95. Moradi F, Iagaru A, McConathy J. Clinical applications of PET/MR imaging. Radiol Clin North Am. 2021;59(5):853–74. https://doi.org/10.1016/j.rcl.2021.05.013.

    Article  PubMed  Google Scholar 

  96. Pearce MS, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. https://doi.org/10.1016/S0140-6736(12)60815-0.

    Article  PubMed  PubMed Central  Google Scholar 

  97. On behalf of the European Society of Cardiovascular Radiology (ESCR), et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur J Hybrid Imaging. 2018;2(1):4086–101. https://doi.org/10.1186/s41824-018-0032-4.

    Article  Google Scholar 

  98. Messroghli DR, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):1–24. https://doi.org/10.1186/s12968-017-0389-8.

    Article  Google Scholar 

  99. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T 1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6. https://doi.org/10.1002/mrm.20110.

    Article  PubMed  Google Scholar 

  100. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16(2):1–20.

    Google Scholar 

  101. Verhaert D, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011;4(3):269–78. https://doi.org/10.1016/j.jcmg.2010.09.023.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. https://doi.org/10.1186/s12968-020-00607-1.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sung K, Nayak KS. Measurement and characterization of RF nonuniformity over the heart at 3T using body coil transmission. J Magn Reson Imaging. 2008;27(3):643–8. https://doi.org/10.1002/jmri.21253.

    Article  PubMed  Google Scholar 

  104. Weingärtner S, Roujol S, Akçakaya M, Basha TA, Nezafat R. Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med. 2015;74(1):115–24. https://doi.org/10.1002/mrm.25387.

    Article  CAS  PubMed  Google Scholar 

  105. Qi H, et al. Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution. Magn Reson Med. 2019;82(4):1331–42. https://doi.org/10.1002/mrm.27811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Han PK, et al. Free-breathing 3D cardiac T 1 mapping with transmit B 1 correction at 3T. Magn Reson Med. 2021;87(4):1832–45. https://doi.org/10.1002/mrm.29097.

    Article  PubMed  Google Scholar 

  107. Shaw JL, et al. Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking. Magn Reson Med. 2019;81(4):2450–63. https://doi.org/10.1002/mrm.27574.

    Article  PubMed  Google Scholar 

  108. Hamilton JI, Jiang Y, Eck B, Griswold M, Seiberlich N. Cardiac cine magnetic resonance fingerprinting for combined ejection fraction, T1 and T2 quantification. NMR Biomed. 2020;33(8):1–17. https://doi.org/10.1002/nbm.4323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges El Fakhri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petibon, Y., Ma, C., Ouyang, J., El Fakhri, G. (2022). Cardiac PET/MR Basics. In: Pelletier-Galarneau, M., Martineau, P. (eds) FDG-PET/CT and PET/MR in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-09807-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09807-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09806-2

  • Online ISBN: 978-3-031-09807-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics