Skip to main content

Abstract

Cerebral blood flow (CBF) is a neurophysiologic parameter which can be of crucial importance in the evaluation of many ICU and intraoperative neurologic conditions. In this monograph some physiologic principles will be reviewed, and standard as well as newer CBF monitoring methods will be described. Specifically, the usefulness and applications of transcranial Doppler (TCD) are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ursino M. Mechanisms of CBF regulation. Crit Rev Biomed Eng. 1991;18:255.

    CAS  PubMed  Google Scholar 

  2. Kuschinsky M. Coupling of blood flow and metabolism in the brain. J Basic Clin Physiol Pharmacol. 1990;1:191–201.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer J, Shimazu K, Okamoto S, Koto A, Ouchi T, Sari A, et al. Effects of alpha adrenergic blockade on autoregulation and chemical vasomotor control of CBF in stroke. Stroke. 1973;4:187.

    Article  CAS  PubMed  Google Scholar 

  4. Owman C, Edvinsson L, Hardebo J. Pharmacological in vitro analysis of amine-mediated vasomotor functions in the intracranial and extracranial vascular beds. Blood Vessels. 1978;15:128.

    CAS  PubMed  Google Scholar 

  5. Suzuki N, Hardebo J. The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Reb. 1993;5(1):33.

    CAS  Google Scholar 

  6. Meglio M, Cioni B, Visocchi M, Rodriguez G, Rosadini G, et al. Spinal cord stimulation and cerebral haemodynamics. Acta Neurochir (Wien). 1991;111(1–2):43.

    Article  CAS  PubMed  Google Scholar 

  7. Garnett E, Nahmias C, Scheffel A, Firnau G, Upton A. Regional CBF in man manipulated by direct vagal stimulation. Pacing Clin Electrophysiol. 1992;15:1579.

    Article  CAS  PubMed  Google Scholar 

  8. Sato A, Sato Y. Regulation of regional CBF by cholinergic fibers originating in the basal forebrain. Neurosci Res. 1992;14:242.

    Article  CAS  PubMed  Google Scholar 

  9. Faraci F, Brian J Jr. Nitric oxide and the cerebral circulation. Stroke. 1994;25:692.

    Article  CAS  PubMed  Google Scholar 

  10. Decety J, Sjoholm H, Ryding E, Stenberg G, DH IN. The cerebellum participates in mental activity: tomographic measurements of regional CBF. Brain Res. 1990;535(2):313.

    Article  CAS  PubMed  Google Scholar 

  11. Iadecola C, Pelligrino D, Moskowitz M, Lassen N. Nitric oxide synthase inhibition and cerebrovascular regulation. [Review]. J Cereb Blood Flow Metab. 1994;14(2):175.

    Article  CAS  PubMed  Google Scholar 

  12. Kuschinsky W, Paulson O. Capillary circulaiton in the brain. Cerebrovasc Brain Metab Reb. 1992;4(3):261.

    CAS  Google Scholar 

  13. Giller C. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery. 1990;27(3):362.

    Article  CAS  PubMed  Google Scholar 

  14. Raichle M, Posner J, Plum F. CBF during and after hyperventilation. Arch Neurol. 1970;3

    Google Scholar 

  15. Greenberg J, Alavi A, Reivich M, al e. Local cerebral blood volume response to carbon dioxide in man. Circ Res. 1978;43:324.

    Article  CAS  PubMed  Google Scholar 

  16. Iliff L, Zilkha E, BuBoulay G, Marshall J, Morsley I, Russell R, et al. Cerebrovascular carbon dioxide reactivity and conductance in patients awake and under general anesthesia. Neurology. 1976;26(9):835.

    Article  CAS  PubMed  Google Scholar 

  17. Tominaga S, Strandgaard S, Uemura K, Ito K, Kutsuzawa T. Cerebrovascular CO2 reactivity in normotensive and hypertensive man. Stroke. 1976;7(5):507.

    Article  CAS  PubMed  Google Scholar 

  18. Shinhoj E. Regulation of CBF as a single function of the interstitial pH in the brain. A hypotheses. Acta Neurol Scand. 1966;42(5):604.

    Article  Google Scholar 

  19. Lassen N, Frieberg L, Kastrup J, Rizzi D, Jensen J. Effects of acetazolamide on CBF and brain tissue oxygenation. Postgrad Med J. 1987;63(737):185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan H, Tt K, Morgan M, Jeffcoat R, Allison J, Goode J, et al. The rCBF resonse to Diamox in normal subjects and cerebrovascular disease patients. J Neurosurg. 1987;67(4):525.

    Article  CAS  PubMed  Google Scholar 

  21. Yonas H, Pindzola R. Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Reb. 1994;6(4):325–40.

    CAS  Google Scholar 

  22. Vorstrup S, Henriksen L, Paulson OB. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest. 1984;74(5):1634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bushnell D, Gupta S, Barnes W, Litocy F, Niemiro M, Steffen G. Evaluation of cerebral perfusion reserve using 5% CO2 and SPECT neuroperfusion imaging. Clin Mucl Med. 1991;16(4):263.

    CAS  Google Scholar 

  24. Shimojyo S, Scheinberg P, Kogure K, Reinmuth O. The effects of graded hypoxia upon transient CBF and oxygen consumption. Neurology. 1968;18(2):127.

    Article  CAS  PubMed  Google Scholar 

  25. Floyd T, Clark J, Gelfand R, Detre J, Ratcliffe S, Guvakov D, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J App Physiol. 2003;95(6):2453–61.

    Article  Google Scholar 

  26. Heistad D, Baumbach G. Cerebral vascular changes during chronic hypertension: good guys and bad guys. J Hypertens Suppl. 1992;10(7):S71.

    CAS  PubMed  Google Scholar 

  27. Faraci F, Baumbach G, Heistad D. Cerebral circulation: humoral regulation and effects of chronic hypertension. J Am Soc Nephrol. 1990;1(1):53.

    Article  CAS  PubMed  Google Scholar 

  28. Faraci F, Heistad D. Regulation of cerebral blood vessels by humoral and endothelium-dependent mechanisms. Update on humoral regulation of vascular tone. Hypertension. 1991;17:917.

    Article  CAS  PubMed  Google Scholar 

  29. Graham D. Ischemic brain following emergency blood pressure lowering in hypertensive patients. Acta Med Scand Suppl. 1983;678:61.

    CAS  PubMed  Google Scholar 

  30. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.

    Article  CAS  PubMed  Google Scholar 

  31. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39(2):183–238.

    Article  CAS  PubMed  Google Scholar 

  32. McCall ML. Cerebral circulation and metabolism in toxemia of pregnancy; observations on the effects of veratrum viride and apresoline (1-hydrazinophthalazine). Am J Obstet Gynecol. 1953;66(5):1015–30.

    Article  CAS  PubMed  Google Scholar 

  33. Moyer J, Morris G, Smith C. Cerebral hemodynamics during controlled hypotension induced by the continuous infusion of ganglionic blocking agents (hexamethonium, Pendiomide and Arfonad). J Clin Invest. 1954;33:1081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;95(5):756–63.

    Article  CAS  PubMed  Google Scholar 

  35. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.

    Article  PubMed  Google Scholar 

  36. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4)

    Google Scholar 

  37. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10(3):373–86.

    Article  PubMed  Google Scholar 

  38. Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD, Piechnik SK, et al. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49(5):1214–22; discussion 22-3.

    CAS  PubMed  Google Scholar 

  39. McPherson RW, Koehler RC, Traystman RJ. Effect of jugular venous pressure on cerebral autoregulation in dogs. Am J Physiol. 1988;255(6 Pt 2):1516–24.

    Google Scholar 

  40. Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Czosnyka M, et al. The lower limit of cerebral blood flow autoregulation is increased with elevated intracranial pressure. Anesth Analg. 2009;108(4):1278–83.

    Article  PubMed  Google Scholar 

  41. Cremer OL, van Dijk GW, Amelink GJ, de Smet AMGA, Moons KGM, Kalkman CJ. Cerebral hemodynamic responses to blood pressure manipulation in severely head-injured patients in the presence or absence of intracranial hypertension. Anesth Analg. 2004;99(4):1211–7.

    Article  PubMed  Google Scholar 

  42. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.

    Article  CAS  PubMed  Google Scholar 

  43. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: Bedside assessment and clinical implications. Crit Care. 2016;20(1)

    Google Scholar 

  44. Budohoski KP, Czosnyka M, De Riva N, Smielewski P, Pickard JD, Menon DK, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71(3):652–60.

    Article  PubMed  Google Scholar 

  45. Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63.

    Article  PubMed  Google Scholar 

  46. De Georgia MA, Deogaonkar A. Multimodal monitoring in the neurological intensive care unit. Neurologist. 2005;11(1):45–54.

    Article  PubMed  Google Scholar 

  47. McHenry LJ, Goldberg H, Jaffe ME, Er K, West J, Cooper E. Regional CBF. Response to carbon dioxide inhalation in cerebrovascular disease. Arch Neurol. 1972;27(5):403.

    Article  PubMed  Google Scholar 

  48. Thompson S. Reactivity of CBF to CO2 in patients with transient cerebral ischemic attacks. Stroke. 1971;2(3):273.

    Article  CAS  PubMed  Google Scholar 

  49. Clifton G, Haden H, Taylor J, Sobel M. Cerebrovascular CO2 reactivity after carotid artery occlusion. J Neurosurg. 1988;69(1):24.

    Article  CAS  PubMed  Google Scholar 

  50. Levine R, Rozenta LJ, Nickles R. Blood flow asymmetry in carotid occlusive disease. Angiology. 1992;43(2):100.

    Article  CAS  PubMed  Google Scholar 

  51. Dewey R, Pieper H, Hunt W. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597.

    Article  CAS  PubMed  Google Scholar 

  52. Early C, Dewey R, Peiper H, Hunt W. Dynamic pressure-flow relationships in the monkey. J Neurosurg. 1974;41:590.

    Article  CAS  PubMed  Google Scholar 

  53. Burton AC, Burton AC. On the physical equilibrium of small blood vessels. Am J Physiol. 1951;164(2):319–29.

    Article  CAS  PubMed  Google Scholar 

  54. Czosnyka M, Smielewski P, Piechnik S, Al-Rawi PG, Kirkpatrick PJ, Matta BF, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66(5):606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCulloch TJ, Liyanagama K, Petchell J, McCulloch TJ, Liyanagama K, Petchell J. Relative hypotension in the beach-chair position: effects on middle cerebral artery blood velocity. Anaesth Intensive Care. 38(3):486–91.

    Google Scholar 

  56. Lopez-Magana JA, Richards HK, Radolovich DK, Kim DJ, Smielewski P, Kirkpatrick PJ, et al. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29(5):987–93.

    Article  PubMed  Google Scholar 

  57. Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW, Aaslid R, et al. Dynamic pressure—flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.

    Article  PubMed  Google Scholar 

  58. Baker WB, Parthasarathy AB, Gannon KP, Kavuri VC, Busch DR, Abramson K, et al. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J Cereb Blood Flow Metab. 2017;37(8):2691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Good W, Gur D. Xenon-enhanced CT of the brain: effect of flow activation on derived CBF measurements. AJNR Am J Neuroadiol. 1991;12(1):83.

    CAS  Google Scholar 

  60. Yonas H. Use of xenon and ultrafast CT to measure CBF. Am J Neuroadiol. 1994;15(4):794.

    CAS  Google Scholar 

  61. Kashiwagi S, Yamashita T, Nakano S, Kalender W, Polacin A, Takasago T, et al. The washin/washout protocol in stable xenon CT CBF studies. AJNR Am J Neuroadiol. 1992;13(1):49.

    CAS  Google Scholar 

  62. Britton K, Grnowska M, Nimon C, T B. CBF in hypertensive patients with cerebrovascular disease: technique for measurement and effect of captopril. Nucl Med Commun. 1985;6(5):251.

    Article  CAS  PubMed  Google Scholar 

  63. Dublin A, McGahan J, Lantz B, Turkel D. Carotid blood flow response to Conray-60: diagnostic implications. ANR Am J Neuroradiol. 1983;4(3):274.

    CAS  Google Scholar 

  64. Obrist WD, Thompson HKJ, Wang HS, Wilkinson WE. Regional CBF estimated by 133-xenon inhalation. Stroke. 1975;6(3):245–56.

    Article  CAS  PubMed  Google Scholar 

  65. Obrist W, Thompson H, Wang H. A subtraction method for determining CBF by xenon-133 inhalation. Neurology. 1970;20(4):411.

    CAS  PubMed  Google Scholar 

  66. Miyamori I, Yasuhara S, Matsubara T, Takasaki H, Takeda R. Effects of a calcium entry blocker on cerebral circulation in essential hypertension. Neurology. 1970;20(4):411.

    Google Scholar 

  67. Kanno I, Iida H, Miura S, Murakami H. Optimal scan time of oxygen-15-labeled water injection method for measurement of CBF. J Nucl Med. 1991;32(10):1931.

    CAS  PubMed  Google Scholar 

  68. Iida H, Kanno I, Mirura S. Rapid measurement of CBF with positron emission tomography. Ciba Found Symp. 1991;163:3.

    Google Scholar 

  69. Hayashida K, Nishimura T, Imakita S, Uehara T. Validation of eliminate vascular activity on 99Tcm-HMPAO brain SPECT for regional CBF (rCBF) determination. Nucl Med Commun. 1991;12(6):545.

    Article  CAS  PubMed  Google Scholar 

  70. Maier-Hauff K, Gerlach L, Baerwald R, Cordes M. CBF measurements with HMPAO- and HiPOM-SPECT in brain tumors: basic rCBF studies. Psychiatry Res. 1989;29(3):341.

    Article  CAS  PubMed  Google Scholar 

  71. Pupi A, DeCristofaro M, Bacciottini L, Antoniucci D, Formiconi A, Mascalchi M, et al. An analysis of the arterial input curve for technetium-99m-HMPAO: quantification of rCBF using single-photon emission computed tomography. J Nucl Med. 1991;32(8):1501.

    CAS  PubMed  Google Scholar 

  72. Murase K, Tanada S, Fujita H, Sakaki S, Hamamoto K. Kinetic behavior of technetium=99m-HMPAO in the human brain and quantification of CBF using dynamic SPECT. J Nucl Med. 1992;33(1):135.

    CAS  PubMed  Google Scholar 

  73. Schmidt J. Changes in human CBF estimated by the (A-V) O2 difference method. Dan Med Bull. 1992;39(4):335.

    CAS  PubMed  Google Scholar 

  74. Cruz J, Gennarelli T, Alves W. Continuous monitoring of cerebral hemodynamic reserve in acute brain injury: relationship to changes in brain swelling. J Trauma. 1992;32(5):629.

    Article  CAS  PubMed  Google Scholar 

  75. Oldendorf W, Kitano M. Radioisotope measurement of brain blood turnover time as a clinical index of brain circulation. J Nucl Med. 1967;8(8):570.

    CAS  PubMed  Google Scholar 

  76. Karpman H, Sheppard J. Effect of papaverine hydrochloride on CBF as measured by forehead thermograms. Angiology. 1975;26(8):592.

    Article  CAS  PubMed  Google Scholar 

  77. Dickman C, Baldwin H, Harrington T, Tallman D. Continuous regional cerebral blood low monitoring in acute craniocerebral trauma. Neurosurgery. 1991;28(3):467.

    Article  CAS  PubMed  Google Scholar 

  78. Merrick M, Ferrington C, Cowen S. Parametric imaging of cerebral vascular reserves. 1. Theory, validation and normal values. Eur J Nucl Med. 1991;18(3):171.

    Article  CAS  PubMed  Google Scholar 

  79. Frerichs K, Feurestein G, Laser-Doppler flowmetry. A review of its application for measuring cerebral and spinal cord blood flow. Mol Chem Neuropathol. 1990;12(1):55.

    Article  CAS  PubMed  Google Scholar 

  80. Gould R. Perfusion quantitation by ultrafast computed tomography. Invest Radiol. 1992;27(Suppl 2):S18.

    Article  PubMed  Google Scholar 

  81. Alsop D, Detre J. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.

    Article  CAS  PubMed  Google Scholar 

  82. Joshi B, Brady K, Lee J, Easley B, Panigrahi R, Smielewski P, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;110(2):321–8.

    Article  PubMed  Google Scholar 

  83. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38(10):2818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Joshi BL, Brady K, Hogue CW. Real time monitoring of cerebral blood flow autoregulation with nirs during cardiac surgery. Proceedings of the 2009 Annual Meeting of the American Society Anesthesiologists; October 17–21, 2009; New Orleans, LA: American Society Anesthesiologists.

    Google Scholar 

  85. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34(6):1783–8.

    Article  PubMed  Google Scholar 

  86. Hartmann A, Dettmers C, Schuler F, Wassmannn H, Schumacher H. Effect of stable xenon on regional CBF and the electroencephalogram in normal volunteers. Stroke. 1991;22(2):181.

    Article  Google Scholar 

  87. Yonas H, Gur D, Good W, Maitz G, Wolfson SJ, Latchaw R. Effects of xenon inhalation on CBF: relevance to humans of reported effects in the rat. J Cereb Blood Flow Metab. 1985;5(4):613.

    Article  CAS  PubMed  Google Scholar 

  88. Sturnegk P, Mellergard P, Yonas H, Theodorsson A, Hillman J. Potential use of quantitative bedside CBF monitoring (Xe-CT) for decision making in neurosurgical intensive care. Br J Neurosurg. 2007;21(4):332–9.

    Article  CAS  PubMed  Google Scholar 

  89. Obrist W, Wilkinson W. Regional CBF measurement in humans by xenon-133 clearance [Review]. Cerebrovasc Brain Metab Reb. 1990;2(4):283–327.

    CAS  Google Scholar 

  90. Obrist W Jr, King C, Wang H. Determination of regional CBF by inhalation of 133-Xenon. Circulation Res. 1967;20(1):124–35.

    Article  CAS  PubMed  Google Scholar 

  91. Skyhoj Olsen T, Larsen B, Bech Skriver E, Enevoldsen E, Lassen N. Focal cerebral ischemia measured by the intra-arterial 133-xenon method. Limitations of 2-dimensional blood flow measurements. Stroke. 1981;12(73):774.

    Google Scholar 

  92. Sundt TM Jr, Sharbrough FW, Anderson RE, Michenfelder JD, Sundt TM Jr, Sharbrough FW, et al. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. 1974. J Neurosurg. 2007;107(4):887–97.

    Article  PubMed  Google Scholar 

  93. Cook DJ, Anderson RE, Michenfelder JD, Oliver WC Jr, Orszulak TA, Daly RC, et al. Cerebral blood flow during cardiac operations: comparison of Kety-Schmidt and xenon-133 clearance methods. Ann Thorac Surg. 1995;59(3):614–20.

    Article  CAS  PubMed  Google Scholar 

  94. Cook DJ, Michenfelder JD, Cook DJ, Michenfelder JD. Measurement of cerebral blood flow during hypothermic cardiopulmonary bypass. Anesthesiology. 1995;82(2):604.

    Article  CAS  PubMed  Google Scholar 

  95. Prough DS, Rogers AT, Prough DS, Rogers AT. What are the normal levels of cerebral blood flow and cerebral oxygen consumption during cardiopulmonary bypass in humans? Anesth Analg. 1993;76(4):690–3.

    Article  CAS  PubMed  Google Scholar 

  96. Rogers AT, Prough DS, Roy RC, Gravlee GP, Stump DA, Cordell AR, et al. Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man. J Thorac Cardiovasc Surg. 1992;103(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  97. Joshi S, Hashimoto T, Ostapkovich N, Pile-Spellman J, Duong DH, Hacein-Bey L, et al. Effect of intracarotid papaverine on human cerebral blood flow and vascular resistance during acute hemispheric arterial hypotension.[Erratum appears in J Neurosurg Anesthesiol. 2009 Jan;21(1):71 Note: Hacien-Bey, L [corrected to Hacein-Bey, L]]. J Neurosurg Anesthesiol. 2001;13(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  98. Ko NU, Achrol AS, Chopra M, Saha M, Gupta D, Smith WS, et al. Cerebral blood flow changes after endovascular treatment of cerebrovascular stenoses. Am J Neuroradiol. 2005;26(3):538–42.

    PubMed  PubMed Central  Google Scholar 

  99. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93(2):265–74.

    Article  CAS  PubMed  Google Scholar 

  100. Wolf S, Martin H, Landscheidt JF, Rodiek SO, Schurer L, Lumenta CB. Continuous selective intraarterial infusion of nimodipine for therapy of refractory cerebral vasospasm. Neurocritical Care. 2010;12(3):346–51.

    Article  CAS  PubMed  Google Scholar 

  101. Soukup J, Bramsiepe I, Brucke M, Sanchin L, Menzel M, Soukup J, et al. Evaluation of a bedside monitor of regional CBF as a measure of CO2 reactivity in neurosurgical intensive care patients. J Neurosurg Anesthesiol. 2008;20(4):249–55.

    Article  PubMed  Google Scholar 

  102. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35(8):1844–51. quiz 52

    Article  PubMed  Google Scholar 

  103. Thome C, Vajkoczy P, Horn P, Bauhuf C, Hubner U, Schmiedek P, et al. Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery. J Neurosurg. 2001;95(3):402–11.

    Article  CAS  PubMed  Google Scholar 

  104. Kofke W, Shaheen N, McWhorter J, Sinz E, Hobbs G. Transcranial Doppler ultrasonography with induction of anesthesia and neuromuscular blockade in surgical patients. J Clin Anesth. 2001;13:335–8.

    Article  CAS  PubMed  Google Scholar 

  105. Brauer P, Kochs E, Werner C, Bloom M, Policare R, Pentheny S, et al. Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol. 1998;10(2):80–5.

    Article  CAS  PubMed  Google Scholar 

  106. Dong ML, Kofke WA, Policare RS, Wang AS, Acuff J, Sekhar LN, et al. Transcranial Doppler ultrasonography in neurosurgery: effects of intracranial tumour on right middle cerebral artery flow velocity during induction of anaesthesia. Ultrasound Med Biol. 1996;22(9):1163–8.

    Article  CAS  PubMed  Google Scholar 

  107. Kofke WA, Dong ML, Bloom M, Policare R, Janosky J, Sekhar L, et al. Transcranial Doppler ultrasonography with induction of anesthesia for neurosurgery. J Neurosurg Anesthesiol. 1994;6(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  108. Eng C, Lam A, Byrd S, Newel lD. The diagnosis and management of a perianesthetic cerebral aneurysmal rupture aided with transcranial Doppler ultrasonography. Anesthesiology. 1993;78(1):191–4.

    Article  CAS  PubMed  Google Scholar 

  109. Bonow RH, Young CC, Bass DI, Moore A, Levitt MR. Transcranial Doppler ultrasonography in neurological surgery and neurocritical care. Neurosurg Focus. 2019;47(6):1–8.

    Article  Google Scholar 

  110. Otis S. Pitfalls in transcranial Doppler diagnosis. In: Babikian V, Wechsler L, editors. Transcranial Doppler ultrasonography. Chapter 4. St. Louis: Mosby; 1993. p. 39–50.

    Google Scholar 

  111. Tegeler C, Eicke M. Physics and principles of transcranial Doppler ultrasonography. In: Babikian V, Wechsler L, editors. Transcranial Doppler ultrasonography. Chapter 1. St. Louis: Mosby; 1993.

    Google Scholar 

  112. Kofke W, Brauer P, Policare R, Penthany S, Barker D, Horton J. Middle cerebral artery blood flow velocity and stable xenon-enhanced computed tomographic blood flow during balloon test occlusion of the internal carotid artery. Stroke. 1995;26:1603–6.

    Article  CAS  PubMed  Google Scholar 

  113. Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir (Wien). 1976;34:45.

    Article  CAS  PubMed  Google Scholar 

  114. Saloman M, Schepp R, Ducker T. Calculated recovery rates in severe head trauma. Neurosurgery. 1981;8:301.

    Article  Google Scholar 

  115. Kumar G, Dumitrascu OM, Chiang CC, O’Carroll CB, Alexandrov AV. Prediction of delayed cerebral ischemia with cerebral angiography: a meta-analysis. Neurocritical Care. 2019;30(1):62–71.

    Article  PubMed  Google Scholar 

  116. Sloan M. Detection of vasospasm following subarachnoid hemorrhage. In: Babikian V, Wechsler L, editors. Transcranial Doppler ultrasonography. Chapter 9. St. Louis: Mosby; 1993. p. 105–27.

    Google Scholar 

  117. Harders A, Gilsbach J. Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound. J Neurosurg. 1987;66:718.

    Article  CAS  PubMed  Google Scholar 

  118. Seiler R, al E. Cerebral vasospasm evaluated by transcranial ultrasound correlated with clinical grade and CT-visualized subarachnoid hemorrhage. J Neurosurg. 1986;64:594.

    Article  CAS  PubMed  Google Scholar 

  119. Caplan L. Transcranial Doppler ultrasound: present status. Neurology. 1990;40:696.

    Article  CAS  PubMed  Google Scholar 

  120. Miller J, Smith R, Holaday H. Carbon dioxide reactivity in the evaluation of cerebral ischemia. Neurosurgery. 1992;30:518.

    CAS  PubMed  Google Scholar 

  121. Silver A, Pederson M Jr, Ganti S, Hilal S, Michelson W. CT of subarachnoid hemorrhage due to ruptured aneurysm. AJNR. 1981;2:13.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49(5):1214–22.

    CAS  PubMed  Google Scholar 

  123. Grande P, Asgeirsson B, Nordstrom C. Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesth Scand. 2002;46(8):929–41.

    Article  PubMed  Google Scholar 

  124. Nemoto EM, Nemoto EM. Dynamics of cerebral venous and intracranial pressures.[see comment]. Acta Neurochir Suppl. 2006;96:435–7.

    Article  CAS  PubMed  Google Scholar 

  125. Giulioni M, Ursino M, Alvisi C. Correlations among intracranial pulsatility, intracranial hemodynamics, and transcranial doppler wave form: Literature review and hypothesis for future studies. Neurosurgery. 1988;22:807.

    Article  CAS  PubMed  Google Scholar 

  126. Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg. 1988;68:745.

    Article  CAS  PubMed  Google Scholar 

  127. Thomas, K, Doberstein C, Zane C, Becker D. Physiological correlation of transcranial doppler waveform patterns in brain dead patients. Proceedings of the 5th International Symposium and Tutorials on Intracranial Hemodynamics: Transcranial Doppler CBF and Other Modalities. The Institute of Applied Physiology and Medicine, Seattle, WA, 1991, Conference Chairman M.P. Spencer, Seattle, WA; 1991.

    Google Scholar 

  128. DeWitt L, Rosengart A, Teal P. Transcranial Doppler ultrasonography: normal values. In: Babikian V, Wechsler L, editors. Transcranial Doppler ultrasonography. Chapter 3. St. Louis: Mosby; 1993. p. 29–38.

    Google Scholar 

  129. Homburg A, Jobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87:488.

    Article  CAS  PubMed  Google Scholar 

  130. Goraj B, Rifkinson-Mann S, Leslie D, Lansen T, Kasoff S, MS T. Correlation of intracranial pressure and transcranial Doppler resistive index after head trauma. AJNR Am J Neuroadiol. 1994;15:1333.

    CAS  Google Scholar 

  131. Aggarwal S, Obrist W, Yonas H, Kramer D, Kang Y, Scott V, et al. Cerebral hemodynamic and metabolic profiles in fulminant hepatic failure: relationship to outcome. Liver Transpl. 2005;11(11):1353–60.

    Article  PubMed  Google Scholar 

  132. Bindi ML, Biancofiore G, Esposito M, Meacci L, Bisa M, Mozzo R, et al. Transcranial doppler sonography is useful for the decision-making at the point of care in patients with acute hepatic failure: a single centre’s experience. J Clin Monit Comput. 2008;22(6):449–52.

    Article  CAS  PubMed  Google Scholar 

  133. Giller C, Mathews D, Purdy P, Kopitnik T, Batjer H, Samson D. The transcranial Doppler appearance of acute carotid artery occlusion. Ann Neurol. 1992;31:101.

    Article  CAS  PubMed  Google Scholar 

  134. Kofke W. Cerebral blood flow monitoring in critical care. Contemporary Critical Care. 2007;4(10):1–12.

    Google Scholar 

  135. Droste DW, Ringelstein EB, Droste DW, Ringelstein EB. Detection of high intensity transient signals (HITS): how and why? Eur J Ultrasound. 1998;7(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  136. Telman G, Kouperberg E, Schlesinger I, Yarnitsky D. Cessation of microemboli in the middle cerebral artery after a single dose of aspirin in a young patient with emboliogenic lacunar syndrome of carotid origin. Isr Med Assoc J. 2006;8(10):724–5.

    PubMed  Google Scholar 

  137. Poppert H, Sadikovic S, Sander K, Wolf O, Sander D. Embolic signals in unselected stroke patients: prevalence and diagnostic benefit. Stroke. 2006;37(8):2039–43.

    Article  PubMed  Google Scholar 

  138. Steiger J, Schaffler L, Boll J, Liechti S. Results of microsurgical carotid endarterectomy: A prospective study with transcranial doppler and EEG monitoring, and elective shunting. Acta Neurochir (Wien). 1989;100:31.

    Article  CAS  PubMed  Google Scholar 

  139. Lindegaard K, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025.

    Article  CAS  PubMed  Google Scholar 

  140. Piepgras D, Morgan M, Sundi T, Yanagihara T, Mussman L. Intracerebral hemorrhage after carotid endarterectomy. J Neurosurg. 1988;68:532.

    Article  CAS  PubMed  Google Scholar 

  141. He L, Baker WB, Milej D, Kavuri VC, Mesquita RC, Busch DR, et al. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. Neurophontonics. 2018;5(4)

    Google Scholar 

  142. Busch DR, Balu R, Baker WB, Guo W, He L, Diop M, et al. Detection of brain hypoxia based on noninvasive optical monitoring of cerebral blood flow with diffuse correlation spectroscopy. Neurocritical Care. 2019;30(1):72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care. 2009;12(2):173–80.

    Article  Google Scholar 

  144. Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, et al. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Optics. 2009;14(3):034015.

    Article  Google Scholar 

  145. Milej D, He L, Abdalmalak A, Baker WB, Anazodo UC, Diop M, et al. Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: validation against MRI. J Cereb Blood Flow Metab. 2020;40(8):1672–84.

    Article  CAS  PubMed  Google Scholar 

  146. Forti RM, Favilla CG, Cochran JM, Baker WB, Detre JA, Kasner SE, et al. Transcranial optical monitoring of cerebral hemodynamics in acute stroke patients during mechanical thrombectomy. J Stroke Cerebrovasc Dis. 2019;28(6):1483–94.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Duffin J, Sobczyk O, Crawley A, Poublanc J, Venkatraghavan L, Sam K, et al. The role of vascular resistance in BOLD responses to progressive hypercapnia. Hum Brain Mapp. 2017;38(11):5590–602.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Fisher JA, Mikulis DJ. Cerebrovascular reactivity: purpose, optimizing methods, and limitations to interpretation – a personal 20-Year Odyssey of (re)searching. Front Physiol. 2021;12

    Google Scholar 

  149. Mandell DM, Han JS, Poublanc J, Crawley AP, Fierstra J, Tymianski M, et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: Preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. Am J Neuroradiol. 2011;32(4):721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Venkatraghavan L, Poublanc J, Han JS, Sobczyk O, Rozen C, Sam K, et al. Measurement of cerebrovascular reactivity as blood oxygen level-dependent magnetic resonance imaging signal response to a hypercapnic stimulus in mechanically ventilated patients. J Stroke Cerebrovasc Dis. 2018;27(2):301–8.

    Article  PubMed  Google Scholar 

  151. MacDonald ME, Berman AJL, Mazerolle EL, Williams RJ, Pike GB. Modeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood flow, volume and mean transit time. NeuroImage. 2018;178:461–74.

    Article  PubMed  Google Scholar 

  152. Simon AB, Buxton RB. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI. NeuroImage. 2015;116:158–67.

    Article  PubMed  Google Scholar 

  153. Da Costa L, Fierstra J, Fisher JA, Mikulis DJ, Han JS, Tymianski M. BOLD MRI and early impairment of cerebrovascular reserve after aneurysmal subarachnoid hemorrhage. J Magn Reson Imaging. 2014;40(4):972–9.

    Article  PubMed  Google Scholar 

  154. Fisher JA, Venkatraghavan L, Mikulis DJ. Magnetic resonance imaging-based cerebrovascular reactivity and hemodynamic reserve. Stroke. 2018;49(8):2011–8.

    Article  PubMed  Google Scholar 

  155. Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41(5):1165–80.

    Article  PubMed  Google Scholar 

  156. Thamm T, Zweynert S, Piper SK, Madai VI, Livne M, Martin SZ, et al. Diagnostic and prognostic benefit of arterial spin labeling in subacute stroke. Brain Behav. 2019;9(5)

    Google Scholar 

  157. Wang K, Shou Q, Ma SJ, Liebeskind D, Qiao XJ, Saver J, et al. Deep learning detection of penumbral tissue on arterial spin labeling in stroke. Stroke. 2020;489-97

    Google Scholar 

  158. Leiva-Salinas C, Provenzale JM, Wintermark M. Responses to the 10 most frequently asked questions about perfusion CT. AJR Am J Roentgenol. 2011;196(1):53–60.

    Article  PubMed  Google Scholar 

  159. Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. AJNR Am J Neuroradiol. 2009;30(4):662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Donahue J, Wintermark M. Perfusion CT and acute stroke imaging: foundations, applications, and literature review. Journal of neuroradiology Journal de neuroradiologie. 2015;42(1):21–9.

    Article  PubMed  Google Scholar 

  161. Takahashi S, Tanizaki Y, Kimura H, Akaji K, Kano T, Suzuki K, et al. Comparison of cerebral blood flow data obtained by computed tomography (CT) perfusion with that obtained by xenon CT using 320-row CT. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2015;24(3):635–41.

    Article  PubMed  Google Scholar 

  162. Siasios I, Kapsalaki EZ, Fountas KN. The role of intraoperative micro-Doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery. Neuroradiology. 2012;54(10):1109–18.

    Article  PubMed  Google Scholar 

  163. Little JR, Yamamoto YL, Feindel W, Meyer E, Hodge CP. Superficial temporal artery to middle cerebral artery anastomosis. Intraoperative evaluation by fluorescein angiography and xenon-133 clearance. J Neurosurg. 1979;50(5):560–9.

    Article  CAS  PubMed  Google Scholar 

  164. Feindel W, Yamamoto YL, Hodge CP. Intracarotid fluorescein angiography: a new method for examination of the epicerebral circulation in man. Can Med Assoc J. 1967;96(1):1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Simal-Julian JA, Miranda-Lloret P, Evangelista-Zamora R, Sanroman-Alvarez P, de San P, Roman L, Perez-Borreda P, et al. Indocyanine green videoangiography methodological variations: review. Neurosurg Rev. 2015;38(1):49–57; discussion.

    Article  PubMed  Google Scholar 

  166. Martirosyan NL, Skoch J, Watson JR, Lemole GM Jr, Romanowski M, Anton R. Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow. Neurosurgery. 2015;11(Suppl 1):252–8.

    PubMed  Google Scholar 

  167. Parthasarathy AB, Weber EL, Richards LM, Fox DJ, Dunn AK. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt. 2010;15(6):066030.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Humeau-Heurtier A, Mahe G, Abraham P. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm. Microvasc Res. 2015;98:54–61.

    Article  PubMed  Google Scholar 

  169. Richards LM, Towle EL, Fox DJ Jr, Dunn AK. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics. 2014;1(1)

    Google Scholar 

  170. Mangraviti A, Volpin F, Cha J, Cunningham SI, Raje K, Brooke MJ, et al. Intraoperative laser speckle contrast imaging for real-time visualization of cerebral blood flow in cerebrovascular surgery: results from pre-clinical studies. Sci Rep. 2020;10(1)

    Google Scholar 

  171. Towle EL, Richards LM, Kazmi SMS, Fox DJ, Dunn AK. Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion. Neurosurgery. 2012;71(5):1023–30.

    Article  PubMed  Google Scholar 

  172. Rønn JH, Nerup N, Strandby RB, Svendsen MBS, Ambrus R, Svendsen LB, et al. Laser speckle contrast imaging and quantitative fluorescence angiography for perfusion assessment. Langenbeck’s Arch Surg. 2019;404(4):505–15.

    Article  Google Scholar 

  173. Lang EW, Lagopoulos J, Griffith J, Yip K, Mudaliar Y, Mehdorn HM, et al. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma. 2003;20(1):69–75.

    Article  PubMed  Google Scholar 

  174. Lang EW, Mehdorn HM, Dorsch NWC, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatry. 2002;72(5):583–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75(6):813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  177. Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74(8):1053–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Coles J, Minhas P, Fryer T, Smielewski P, Aigbirihio F, Donovan T, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Clin. 2002;30(9):1950–9.

    CAS  Google Scholar 

  179. Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24(2):202–11.

    Article  PubMed  Google Scholar 

  180. Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, et al. Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab. 2004;24(2):191–201.

    Article  PubMed  Google Scholar 

  181. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.

    Article  PubMed  Google Scholar 

  182. Riemann L, Beqiri E, Smielewski P, Czosnyka M, Stocchetti N, Sakowitz O, et al. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Crit Care. 2020;24(1)

    Google Scholar 

  183. Liu X, Czosnyka M, Donnelly J, Cardim D, Cabeleira M, Hutchinson PJ, et al. Wavelet pressure reactivity index: a validation study. J Physiol. 2018;596(14):2797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41(9):1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Thiele RH, Shaw AD, Bartels K, Brown CHI, Grocott H, Heringlake M, et al. American Society for Enhanced Recovery and Perioperative quality initiative joint consensus statement on the role of neuromonitoring in perioperative outcomes: cerebral near-infrared spectroscopy. Anesth Analg. 2020:1444–55.

    Google Scholar 

  186. Lee KFH, Wood MD, Maslove DM, Muscedere JG, Boyd JG. Dysfunctional cerebral autoregulation is associated with delirium in critically ill adults. J Cereb Blood Flow Metab. 2019;39(12):2512–20.

    Article  PubMed  Google Scholar 

  187. Rosenblatt K, Walker KA, Goodson C, Olson E, Maher D, Brown CHI, et al. Cerebral autoregulation–guided optimal blood pressure in sepsis-associated encephalopathy: a case series. J Intensive Care Med. 2020;35(12):1453–64.

    Article  PubMed  Google Scholar 

  188. Lathouwers KM, De Deyne CS, Jans F, Truijen J, Heylen RJ. Absolute cerebral oximetry (FORE-SIGHT) in benchchair positioning for shoulder surgery. Proceedings of the 2009 Annual Meeting of the American Society Anesthesiologists; October 20, 2009 American Society of Anesthesiologists; 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Andrew Kofke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kofke, W.A., Creamer, A.D. (2023). Monitoring Cerebral Blood Flow. In: Seubert, C.N., Balzer, J.R. (eds) Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-09719-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09719-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09718-8

  • Online ISBN: 978-3-031-09719-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics