Skip to main content

Bioremediation of Contaminated Soil by Microalgae and Its Importance in Biofuel Production

  • Chapter
  • First Online:
Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation

Abstract

Microalgae can grow rapidly in all moistening locations and pick up harmful chemical compounds from the soil environment. The soil ecosystem is highly contaminated by human activity comprising urbanization, herbicides, various dyes, and hazardous chemical compounds. So, the dangerous chemicals were favorably impacted by groundwater and the food chain. In many scientific works of literature, the solution to soil pollution and the role of microalgae cultivation have been documented day by day. The best way to extract the toxins from the soil ecosystem is to cultivate microalgae. In a sewage like polluted soil environment containing toxic contaminants, heavy metals, and some of the non-degraded particles that are absorbed by microalgae and release O2 via their oxygenic photosynthetic process, degrade the toxic pollutants and the microalgal biomass thus produced can be used for biodiesel production, microalgae in general and extremophilic microalgae, in particular, grow well. In this chapter, we examine the removal of toxic chemical compounds from the soil environment using the cultivation of microalgae and the production of biofuel from algal oil for the next generation. The biofuel reduces air pollution and can be generated quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akter N (2000) Medical waste management: a review. AIT Environmental Engineering Program School of Environment Resources and Development

    Google Scholar 

  • Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Energy Technol 2(2):216–225

    Google Scholar 

  • Ali ME, Abd El-Aty AM, Badawy MI, Ali RK (2018) Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol Environ Saf 151:144–152

    Article  CAS  PubMed  Google Scholar 

  • Alves MJ, Nascimento SM, Pereira IG, Martins MI, Cardoso VL, Reis M (2013) Biodiesel purification using micro and ultrafiltration membranes. Renew Energy 58:15–20

    Article  CAS  Google Scholar 

  • Araujo GS, Matos LJ, Fernandes JO, Cartaxo SJ, Gonçalves LR, Fernandes FA, Farias WR (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20(1):95–98

    Article  CAS  PubMed  Google Scholar 

  • Arunakumara KK, Zhang X, Song X (2008) Bioaccumulation of Pb 2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. J Ocean Univ China 7(4):397–403

    Article  CAS  Google Scholar 

  • Atadashi IM (2015) Purification of crude biodiesel using dry washing and membrane technologies. Alex Eng J 54(4):1265–1272

    Article  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz AA (2011a) Biodiesel separation and purification: a review. Renew Energy 36(2):437–443

    Article  CAS  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz AA, Sulaiman NM (2011b) Refining technologies for the purification of crude biodiesel. Appl Energy 88(12):4239–4251

    Article  CAS  Google Scholar 

  • Baldev E, MubarakAli D, Dhivya M, Kanimozhi M, Shakena-Fathima T, Alharbi NS, Arunachalam C, Alharbi SA, Thajuddin N (2015) Facile and novel strategy for methods of extraction of biofuel grade lipids from microalgae-an experimental report. Int J Biotechnol Wellness Indus 3(4):121–127

    CAS  Google Scholar 

  • Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Ishack KS, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B 105:207–214

    Article  CAS  Google Scholar 

  • Baldev E, Mubarakali D, Saravanakumar K, Arutselvan C, Alharbi NS, Alharbi SA, Sivasubramanian V, Thajuddin N (2018) Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew Energy 123:486–498

    Article  CAS  Google Scholar 

  • Barone V, Puglisi I, Fragalà F, Stevanato P, Baglieri A (2019) Effect of living cells of microalgae or their extracts on soil enzyme activities. Arch Agron Soil Sci 65(5):712–26

    Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Bateni H, Saraeian A, Able C (2017) A comprehensive review on biodiesel purification and upgrading. Biofuel Res J 4(3):668–690

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology (Vol 10). Cambridge University Press

    Google Scholar 

  • Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Biores Technol 123:520–527

    Article  CAS  Google Scholar 

  • Berrios M, Skelton RL (2008) Comparison of purification methods for biodiesel. Chem Eng J 144(3):459–465

    Article  CAS  Google Scholar 

  • Blackburn JW, Hafker WR (1993) The impact of biochemistry bioavailability and bioactivity on the selection of bioremediation techniques. Trends Biotechnol 11(8):328–333

    Article  CAS  PubMed  Google Scholar 

  • Borah D, Kennedy B, Gopalakrishnan S, Chithonirai A, Nooruddin T (2019) Bioremediation and biomass production with the green microalga Chlorococcum humicola and textile mill effluent (TE). Proceedings of the national academy of sciences India section B: Biol Sci, 1–9

    Google Scholar 

  • Byreddy AR, Gupta A, Barrow CJ, Puri M (2015) Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar Drugs 13(8):5111–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum strain PR-6. Biochem Biophys Res Commun 88(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604

    Article  Google Scholar 

  • Chen J, Zheng F, Guo R (2015) Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PLoS ONE 10(7):e0133273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Xie Z, Hu C, Li D, Wang G, Liu Y (2006) Man-made desert algal crusts as affected by environmental factors in Inner Mongolia China. J Arid Environ 67(3):521–527

    Article  Google Scholar 

  • Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Biores Technol 102(21):10151–10153

    Article  CAS  Google Scholar 

  • Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang JS (2018) Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng 91:332–344

    Article  CAS  Google Scholar 

  • Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, Chang JS (2018) Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol J 13(6):1700618

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90(3–4):543–556

    Article  CAS  Google Scholar 

  • Costa JA, Freitas BC, Cruz CG, Silveira J, Morais MG (2019) Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health B 54(5):366–375

    Article  CAS  PubMed  Google Scholar 

  • Daliry S, Hallajisani A, Mohammadi RJ, Nouri H, Golzary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth, 217–230

    Google Scholar 

  • de Godos I, Muñoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229:446–449

    Article  PubMed  CAS  Google Scholar 

  • de Jesus SS, Ferreira GF, Moreira LS, Maciel Filho R (2020) Biodiesel production from microalgae by direct transesterification using green solvents. Renew Energy 160:1283–1294

    Article  CAS  Google Scholar 

  • de Souza MH, Calijuri ML, Assemany PP, de Siqueira CJ, de Oliveira AC (2019) Soil application of microalgae for nitrogen recovery: a life-cycle approach. J Clean Prod 211:342–349

    Article  CAS  Google Scholar 

  • Dębowski M, Zieliński M, Krzemieniewski M, Grala DM, A, (2012) Microalgae–cultivation methods. Polish J Nat Sci 27(2):151–164

    Google Scholar 

  • Decesaro A, Rampel A, Machado TS, Thomé A, Reddy K, Margarites AC, Colla LM (2017) Bioremediation of soil contaminated with diesel and biodiesel fuel using biostimulation with microalgae biomass. J Environ Eng 143(4):04016091

    Article  CAS  Google Scholar 

  • Do Nascimento M, Battaglia ME, Rizza LS, Ambrosio R, Di Palma AA, Curatti L (2019) Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Res 43:101652

    Article  Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • El-Ansary MS, fatah Hamouda RA, Ahmed-Farid OA (2020) Bioremediation of Oxamyl Compounds by Algae: description and traits of root-knot nematode control. Waste and Biomass Valorization, 1

    Google Scholar 

  • El-Shimi HI, Attia NK, El-Sheltawy ST, El-Diwani GI (2013) Biodiesel production from Spirulina-Platensis microalgae by in-situ transesterification process. J Sustain Bioenergy Syst 3(03):224

    Article  CAS  Google Scholar 

  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Paracetamol and salicylic acid removal from contaminated water by microalgae. J Environ Manage 203:799–806

    Article  CAS  PubMed  Google Scholar 

  • Ettler V (2016) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74

    Article  CAS  Google Scholar 

  • Frac M, Jezierska-Tys S, Tys J (2010) Microalgae for biofuels production and environmental applications: A review. Afr J Biotech 9(54):9227–9236

    Google Scholar 

  • Gattullo CE, Bährs H, Steinberg CE, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4(1):1–36

    Google Scholar 

  • Günerken E, D’Hondt E, Eppink MH, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    Article  PubMed  CAS  Google Scholar 

  • Gojkovic Z, Lindberg RH, Tysklind M, Funk C (2019) Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol Environ Saf 170:644–656

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AL, Pires JC, Simoes M (2016) The effects of light and temperature on microalgal growth and nutrient removal: an experimental and mathematical approach. RSC Adv 6(27):22896–22907

    Article  CAS  Google Scholar 

  • González-González LM, Zhou L, Astals S, Thomas-Hall SR, Eltanahy E, Pratt S, Jensen PD, Schenk PM (2018) Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop. Biores Technol 263:625–630

    Article  CAS  Google Scholar 

  • Gorin KV, Sergeeva YE, Butylin VV, Komova AV, Pojidaev VM, Badranova GU, Shapovalova AA, Konova IA, Gotovtsev PM (2015) Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae. Biores Technol 193:178–184

    Article  CAS  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91(1):116–121

    Article  CAS  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28(3):279–288

    Article  Google Scholar 

  • Harding LW, Phillips JH (1978) Polychlorinated biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49(2):103–111

    Article  CAS  Google Scholar 

  • Hill WR, Larsen IL (2005) Growth dilution of metals in microalgal biofilms. Environ Sci Technol 39(6):1513–1518

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Tu Y, Song C, Li T, Lin J, Wu Y, Liu J, Wu C (2016) Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa. Aquat Toxicol 172:103–110

    Article  CAS  PubMed  Google Scholar 

  • Inthorn D (2001) Removal of heavy metal by using microalgae. In: Photosynthetic microorganisms in environmental biotechnology. Springer-Verlag Hong Kong, pp 111–169

    Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87(3):278–284

    Article  CAS  PubMed  Google Scholar 

  • Junying ZH, Junfeng RO, Baoning ZO (2013) Factors in mass cultivation of microalgae for biodiesel. Chin J Catal 34(1):80–100

    Article  CAS  Google Scholar 

  • Kaewsarn P (2002) Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp Chemosphere 47(10):1081–1085

    Google Scholar 

  • Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P (2017) Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew Sustain Energy Rev 72:1083–1093

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605

    Article  PubMed  CAS  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ Toxicol Chem Int J 16(2):220–9

    Google Scholar 

  • Krishna AK, Govil PK (2007) Soil contamination due to heavy metals from an industrial area of Surat, Gujarat. Western India. Environ Monitoring Assess 124(1–3):263–275

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores Technol 101(1):S75–S77

    Article  CAS  Google Scholar 

  • Lee SY, Cho JM, Chang YK, Oh YK (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Biores Technol 244:1317–1328

    Article  CAS  Google Scholar 

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387(1–3):141–154

    Article  CAS  PubMed  Google Scholar 

  • Liang K, Zhang Q, Cong W (2012) Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 60(47):11771–11776

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Sang M, Zhang C (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martı́nez CE, Jacobson AR, McBride MB (2003) Aging and temperature effects on DOC and elemental release from a metal contaminated soil. Environ Pollut 122(1):135–143

    Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000a) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Singleton I, McClure NC, Naidu R (2000b) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38(4):439–445

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Review Environ Sci Bio/technology 12(2):165–178

    Article  Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28(2):299–311

    Article  CAS  PubMed  Google Scholar 

  • Muhaemin M (2004) Toxicity and bioaccumulation of lead in Chlorella and Dunaliella. J Coastal Dev 8(1):27–34

    Google Scholar 

  • Munoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61(3):261–267

    Article  CAS  PubMed  Google Scholar 

  • Neto AM, de Souza RA, Leon-Nino AD, da Costa JD, Tiburcio RS, Nunes TA, de Mello TC, Kanemoto FT, Saldanha-Corrêa FM, Gianesella SM (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energy 55:525–531

    Article  CAS  Google Scholar 

  • Phong WN, Show PL, Ling TC, Juan JC, Ng EP, Chang JS (2018) Mild cell disruption methods for bio-functional proteins recovery from microalgae—recent developments and future perspectives. Algal Res 31:506–516

    Article  Google Scholar 

  • Pinto E, Sigaud-kutner TC, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae 1. J Phycol 39(6):1008–1018

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Biores Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Płaczek M, Patyna A, Witczak S (2017) Technical evaluation of photobioreactors for microalgae cultivation. InE3S web of conferences (vol. 19:02032) EDP Sciences

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Qiao K, Takano T, Liu S (2015) Discovery of two novel highly tolerant NaHCO3 Trebouxiophytes: identification and characterization of microalgae from extreme saline–alkali soil. Algal Res 9:245–253

    Article  Google Scholar 

  • Rajvanshi S, Sharma MP (2012) Micro algae: a potential source of biodiesel. J Sustain Bioenergy Syst 2(03):49

    Article  CAS  Google Scholar 

  • Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Sierra LS, Dixon CK, Wilken LR (2017) Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res 25:149–159

    Article  Google Scholar 

  • Singh D (2007) Removal of Ni (II) from aqueous solution by Biosorption using two green algal species Oscillatoria sp & Spirogyra sp In 5th WSEAS international conference on environment ecosystems and development, pp 310–314

    Google Scholar 

  • Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manage 217:499–508

    Article  PubMed  Google Scholar 

  • Singh NS, Sharma R, Parween T, Patanjali PK (2018) Pesticide contamination and human health risk factor. In: Modern age environmental problems and their remediation. Springer, Cham, pp 49–68

    Google Scholar 

  • Subashchandrabose SR, Venkateswarlu K, Venkidusamy K, Palanisami T, Naidu R, Megharaj M (2019) Bioremediation of soil long-term contaminated with PAHs by algal–bacterial synergy of Chlorella sp MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase. Sci Total Environ 659:724–731

    Article  CAS  PubMed  Google Scholar 

  • Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181(1–3):1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Tiller KG (1992) Urban soil contamination in Australia. Soil Res 30(6):937–957

    Article  CAS  Google Scholar 

  • Ting H, Haifeng L, Shanshan M, Zhang Y, Zhidan L, Na D (2017) Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biolog Eng 10(1):1–29

    Google Scholar 

  • Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. Handbook of Microalgal Culture: Biotechnol Appl Phycol 1:178–214

    Google Scholar 

  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5(3):331–349

    Article  CAS  Google Scholar 

  • Moro V, Claire GB, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31(4):778–786

    Article  CAS  PubMed  Google Scholar 

  • Van Straalen NM (2002) Assessment of soil contamination–a functional perspective. Biodegradation 13(1):41–52

    Article  PubMed  Google Scholar 

  • Wang S, Wang X, Poon K, Wang Y, Li S, Liu H, Lin S, Cai Z (2013) Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 92(11):1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Wilcke W, Müller S, Kanchanakool N, Zech W (1998) Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma 86(3–4):211–228

    Article  CAS  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Biores Technol 102(21):10047–10051

    Article  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189

    Article  CAS  Google Scholar 

  • Yılmaz AB, Işık O, Sayın S (2005) Bioaccumulation and Toxicity of Different Copper Concentrations in Tetraselmis Chuii Su Ürünleri Dergisi 22(3):297–301

    Google Scholar 

  • Ying K, Zimmerman WB, Gilmour DJ (2014) Effects of CO and pH on growth of the microalga Dunaliella salina. J Microbial Biochem Technol 6(3):167–173

    Article  CAS  Google Scholar 

  • Zenouzi A, Ghobadian B, Hejazi MA, Rahnemoon P (2013) Harvesting of microalgae Dunaliella salina using electroflocculation, 879–887

    Google Scholar 

  • Zhang Y, Li Y, Zhang X, Tan T (2015) Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Biores Technol 196:712–715

    Article  CAS  Google Scholar 

  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20(2):337–347

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759

    Article  CAS  PubMed  Google Scholar 

  • Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ (2014a) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16(8):2018–2027

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J (2014b) Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev 36:256–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nooruddin Thajuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seenivasan, H.K., Moola, A.K., Thajuddin, N. (2022). Bioremediation of Contaminated Soil by Microalgae and Its Importance in Biofuel Production. In: Malik, J.A. (eds) Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-08830-8_8

Download citation

Publish with us

Policies and ethics