Skip to main content

Comparisons of Knowledge Graphs and Entity Extraction in Breast Cancer Subtyping Biomedical Text Analysis

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

In order to capitalize on the extensive biological research publications and databases, knowledge graphs can help extract clinically useful details from large and complicated resources. Here, we compare utility of knowledge graphs and named entity extraction for identifying biologically appropriate results from breast cancer subtyping publications. This biomedical field is an excellent representative test set - the biological mechanisms are well studied but complex, while the clinical applications of identifying breast cancer subtypes are critical to making appropriate diagnostic and therapeutic considerations. Optimizing knowledge graphs to extract actionable biological details rapidly and accurately could have huge implications in translating biological data into clinical care responses. Our research suggests that limitations exist in current knowledge graph pipelines in biomedical data analysis, primarily related to named entity extraction issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastien, R.R., et al.: Pam50 breast cancer subtyping by RT-QPCR and concordance with standard clinical molecular markers. BMC Med. Genom. 5(1), 1–12 (2012)

    Article  Google Scholar 

  2. Blows, F.M., et al.: Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7(5), e1000279 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burstein, H.J.: The distinctive nature of her2-positive breast cancers. New Engl. J. Med. 353(16), 1652–1654 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Callahan, T.J., Tripodi, I.J., Pielke-Lombardo, H., Hunter, L.E.: Knowledge-based biomedical data science. Ann. Rev. Biomed. Data Sci. 3, 23–41 (2020)

    Article  Google Scholar 

  5. Chia, S.K., et al.: A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin. Cancer Res. 18(16), 4465–4472 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curtis, C., et al.: The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature 486, 346–352 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dai, X., et al.: Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5(10), 2929 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fadare, O., Tavassoli, F.A.: Clinical and pathologic aspects of basal-like breast cancers. Nat. Clin. Pract. Oncol. 5(3), 149–159 (2008)

    Article  PubMed  Google Scholar 

  9. Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics 20(suppl_1), i145–i151 (2004)

    Google Scholar 

  10. Horr, C., Buechler, S.A.: Breast cancer consensus subtypes: a system for subtyping breast cancer tumors based on gene expression. NPJ Breast Cancer 7(1), 1–13 (2021)

    Article  Google Scholar 

  11. Ignatiadis, M., Sotiriou, C.: Luminal breast cancer: from biology to treatment. Nat. Rev. Clin. Oncol. 10(9), 494–506 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Koboldt, D., et al.: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)

    Article  CAS  Google Scholar 

  13. Lakis, S., et al.: The androgen receptor as a surrogate marker for molecular apocrine breast cancer subtyping. The Breast 23(3), 234–243 (2014)

    Article  PubMed  Google Scholar 

  14. Liu, Z., Zhang, X.S., Zhang, S.: Breast tumor subgroups reveal diverse clinical prognostic power. Sci. Rep. 4, 4002 (2014). https://europepmc.org/articles/PMC5379255

  15. Neumann, M., King, D., Beltagy, I., Ammar, W.: Scispacy: Fast and robust models for biomedical natural language processing. arXiv preprint arXiv:1902.07669 (2019)

  16. Nicholson, D.N., Greene, C.S.: Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J. 18, 1414–1428 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rontogianni, S., et al.: Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun. Biol. 2(1), 1–13 (2019)

    Article  CAS  Google Scholar 

  18. Rossanez, A., Dos Reis, J.C., Torres, R.D.S., de Ribaupierre, H.: Kgen: a knowledge graph generator from biomedical scientific literature. BMC Med. Inf. Decis. Mak. 20(4), 1–24 (2020)

    Google Scholar 

  19. Shibahara, T., et al.: Deep learning generates custom-made logistic regression models for explaining how breast cancer subtypes are classified. bioRxiv (2021)

    Google Scholar 

  20. Sims, A.H., Howell, A., Howell, S.J., Clarke, R.B.: Origins of breast cancer subtypes and therapeutic implications. Nat. Clin. Pract. Oncol. 4(9), 516–525 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  PubMed  Google Scholar 

  22. Sung, M., Jeong, M., Choi, Y., Kim, D., Lee, J., Kang, J.: Bern2: an advanced neural biomedical named entity recognition and normalization tool. arXiv preprint arXiv:2201.02080 (2022)

  23. Troester, M.A., Swift-Scanlan, T.: Challenges in studying the etiology of breast cancer subtypes. Breast Cancer Res. BCR 11(3), 104 (2009). https://europepmc.org/articles/PMC2716506

  24. Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018). https://doi.org/10.1007/s11704-016-5228-9

    Article  Google Scholar 

  25. Zardavas, D., Irrthum, A., Swanton, C., Piccart, M.: Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12(7), 381–394 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davidson, J. et al. (2022). Comparisons of Knowledge Graphs and Entity Extraction in Breast Cancer Subtyping Biomedical Text Analysis. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics