Skip to main content

An Overview of 3D Printable Materials for Dental and Craniofacial Applications

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

Additive manufacturing (AM), colloquially known as 3D printing, is a process of making objects by depositing materials in a layer-by-layer fashion. 3D printing finds its use in several applications, including aerospace, engineering, construction, and medicine. There are numerous 3D printing material options available, namely resins, polymers, and metals. These materials may be in the form of powder, liquid resins, and filaments. Recent material and process development has seen increasing use of 3D printing for biomedical applications, particularly in dental and craniofacial applications. Digital dentistry is enabled by using 3D printing techniques like selective laser sintering, stereolithography (SLA), and fused deposition modeling (FDM) to manufacture patient-specific instrumentation. Mass and individual customization, perfect fit, quick turnaround time, and accurate clinical outcomes are the benefits of using 3D printing for dentistry. Anatomical models, clear aligners, and gingiva masks are among the few applications which use 3D printing for indirect use. Other dental applications that directly utilize 3D printing for end use are maxillofacial implants, crowns, and bridges. With emerging research, the assortment of 3D printing materials is only going to grow in the future. High-strength polymers like polyether ether ketone (PEEK), biomaterials, ceramics, and novel metal alloys will soon augment digital dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu X, He L, Zhu B, Li J, Li J. Advances in polymeric materials for dental applications. Polym Chem. 2017;8(5):807–23. https://doi.org/10.1039/C6PY01957A.

    Article  Google Scholar 

  2. Zaharia C, Gabor AG, Gavrilovici A, Stan AT, Idorasi L, Sinescu C, Negruţiu ML. Digital dentistry—3D printing applications. J Interdiscip Med. 2017;2(1):50–3. https://doi.org/10.1515/jim-2017-0032.

    Article  Google Scholar 

  3. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9. https://doi.org/10.1038/sj.bdj.2015.914.

    Article  Google Scholar 

  4. High accuracy 3D printing materials for dental labs and practices [Internet]. Available from: https://dental.formlabs.com/materials/.

  5. Kessler A, Hickel R, Reymus M. 3D printing in dentistry—state of the art. Oper Dent. 2019;45:30–40. https://doi.org/10.2341/18-229-L.

    Article  Google Scholar 

  6. Tang JC, Luo JP, Huang YJ, Sun JF, Zhu ZY, Xu JY, Dargusch MS, Yan M. Immunological response triggered by metallic 3D printing powders. Addit Manuf. 2020; https://doi.org/10.1016/j.addma.2020.101392.

  7. Rimington R, Capel A, Player D, Bibb R, Christie S, Lewis M. Feasibility and biocompatibility of 3D-printed photopolymerized and laser sintered polymers for neuronal, myogenic, and hepatic cell types. Macromol Biosci. 2018;2018:1800113. https://doi.org/10.1002/mabi.201800113.

    Article  Google Scholar 

  8. Taczała J, Czepułkowska W, Konieczny B, Sokołowski J, Kozakiewicz M, Szymor P. Comparison of 3D printing MJP and FDM technology in dentistry. Arch Mater Sci Eng. 2020;101(1):32–40. https://doi.org/10.5604/01.3001.0013.9504.

    Article  Google Scholar 

  9. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172. https://doi.org/10.3389/fbioe.2018.00172.

    Article  Google Scholar 

  10. Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29(2):e1–10. https://doi.org/10.1016/j.dental.2012.10.011.

    Article  Google Scholar 

  11. Connert T, Zehnder MS, Amato M, Weiger R, Kühl S, Krastl G. Microguided endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J. 2018;51(2):247–55. https://doi.org/10.1111/iej.12809.

    Article  Google Scholar 

  12. Tarsitano A, Ciocca L, Scotti R, Marchetti C. Morphological results of customized microvascular mandibular reconstruction: a comparative study. J Craniomaxillofac Surg. 2016;44(6):697–702. https://doi.org/10.1016/j.jcms.2016.03.007.

    Article  Google Scholar 

  13. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009;38(2):187–92. https://doi.org/10.1016/j.ijom.2008.11.026.

    Article  Google Scholar 

  14. Kamio T, Hayashi K, Onda T, Takaki T, Shibahara T, Yakushiji T, Shibui T, Kato H. Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields. 3D Print Med. 2018;4(1):1–7. https://doi.org/10.1186/s41205-018-0028-5.

    Article  Google Scholar 

  15. Anunmana C, Ueawitthayasuporn C, Kiattavorncharoen S, Thanasrisuebwong P. In vitro comparison of surgical implant placement accuracy using guides fabricated by three different additive technologies. Appl Sci. 2020;10(21):7791. https://doi.org/10.3390/app10217791.

    Article  Google Scholar 

  16. Katreva I, Dikova T, Abadzhiev M, Tonchev T, Dzhendov D, Simov M, Angelova S, Pavlova D, Doychinova M. 3D-printing in contemporary prosthodontic treatment. Scripta Scientifica Medicinae Dentalis. 2016;2(1):7–11.

    Article  Google Scholar 

  17. 3D printing permanent crowns with the Form 3B – White Paper [Internet]. 2020. Available from: https://3d.formlabs.com/permanent-crowns-application-guide/.

  18. Venkatesh KV, Nandini VV. Direct metal laser sintering: a digitised metal casting technology. J Indian Prosthodont Soc. 2013;13(4):389–92. https://doi.org/10.1007/s13191-013-0256-8.

    Article  Google Scholar 

  19. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008;24(11):1525–33. https://doi.org/10.1016/j.dental.2008.03.029.

    Article  Google Scholar 

  20. Groth C, Kravitz ND, Shirck JM. Incorporating three-dimensional printing in orthodontics. J Clin Orthod. 2018;52(1):28–33.

    Google Scholar 

  21. 3D printing splints with Formlabs SLA 3D Printers, Formlabs [Internet]. 2020. Available from: https://dental.formlabs.com/indications/splints-and-occlusal-guards/guide-v2/.

  22. Producing molds for clear dental aligners with HP Multi Jet Fusion 3D printing. HP Inc [Internet]. 2018. Available from: https://saratech.com/wp-content/uploads/2019/07/Producing-molds-for-clear-dental-aligners-with-HP-Multi-Jet-Fusion-3D-printing_SARATECH.pdf.

  23. SmileDirectClub to 3D print 20M unique aligner molds a year with HP MJF [Internet]. 3D Printing Media Network. 2019. Available from: https://www.3dprintingmedia.network/smiledirectclub-3d-print-20-million-aligner-hp/.

  24. Anderson J, Wealleans J, Ray J. Endodontic applications of 3D printing. Int Endod J. 2018;51(9):1005–18. https://doi.org/10.1111/iej.12917.

    Article  Google Scholar 

  25. Li Z, Liu YS, Ye HQ, Liu YS, Hu WJ, Zhou YS. Diagnosis and treatment of complicated anterior teeth esthetic defects by combination of whole-process digital esthetic rehabilitation with periodontal surgery. J Peking Univ Health Sci. 2017;49(1):71–5.

    Google Scholar 

  26. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018.

    Article  Google Scholar 

  27. Marwah OMF, Sharif S, Zainol MA, Ibrahim M, Mohamad EJ. 3D printer patterns evaluation for direct investment casting. Appl Mech Mater. 2013;2013:1400–3.

    Article  Google Scholar 

  28. Declaration of conformity for surgical guide resin. Formlabs 2019. [Internet]. Available from: https://dental-media.formlabs.com/filer_public/ca/1b/ca1bbd27-d09b-4bec-b851-2be3479c5ff2/sgv2-declaration_of_conformity.pdf.

  29. Declaration of conformity for temporary CB resin. Bego 2020. Available from: https://media.formlabs.com/m/6e1926d2c347bce0/original/-ENEU-Declaration-of-Conformity-for-Temporary-CB.pdf.

  30. Biocompatibility: USP class VI and ISO 10993-1 information. 3D Systems 2020. Available from: http://infocenter.3dsystems.com/materials/classvi.

  31. Wang H, Zhao B, Liu C, Wang C, Tan X, Hu M. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One. 2016;11(7):e0158513. https://doi.org/10.1371/journal.pone.0158513.

    Article  Google Scholar 

  32. Berli C, Thieringer FM, Sharma N, Müller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent. 2020;124(6):780–6. https://doi.org/10.1016/j.prosdent.2019.10.024.

    Article  Google Scholar 

  33. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofac Orthop. 2019;156(5):694–701. https://doi.org/10.1016/j.ajodo.2019.05.012.

    Article  Google Scholar 

  34. Reymus M, Fabritius R, Keßler A, Hickel R, Edelhoff D, Stawarczyk B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Clin Oral Investig. 2020;24(2):701–10. https://doi.org/10.1007/s00784-019-02952-7.

    Article  Google Scholar 

  35. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;76:1328–43. https://doi.org/10.1016/j.msec.2017.02.094.

    Article  Google Scholar 

  36. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110–5. https://doi.org/10.1016/j.bioactmat.2019.12.003.

    Article  Google Scholar 

  37. Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater. 2019;1:593–611. https://doi.org/10.1021/acsapm.8b00165.

    Article  Google Scholar 

  38. Chung Y, Park J, Kim T, Ahn J, Cha H, Lee J. 3D printing of resin material for denture artificial teeth: chipping and indirect tensile fracture resistance. Materials. 2018;11:1798. https://doi.org/10.3390/ma11101798.

    Article  Google Scholar 

  39. Tahayeri A, Morgan M, Fugolin A, Bompolaki D, Athirasala A, Pfeifer C, Ferracane J, Bertassoni L. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34:192–200. https://doi.org/10.1016/j.dental.2017.10.003.

    Article  Google Scholar 

  40. Sun Y, Chen H, Li H, Deng K, Zhao T, Wany Y, Zhou Y. Clinical evaluation of final impressions from three dimensional printed custom trays. Sci Rep. 2017;7:14958. https://doi.org/10.1038/s41598-017-14005-8.

    Article  Google Scholar 

  41. Sahwil H. An introduction to surgical guides in dentistry. 19 Feb 2019. DDS Labs Blogs [Internet]. Available from: https://blog.ddslab.com/surgical-guides-in-dentistry.

  42. Trobough KP, Garrett PW. Surgical guide techniques for dental implant placement [Internet]. 24 Jul 2018. Available from: https://decisionsindentistry.com/article/surgical-guide-techniques-for-dental-implant-placement/.

  43. Nojima LI, Araújo AS, Alves M Jr. Indirect orthodontic bonding—a modified technique for improved efficiency and precision. Dental Press J Orthod. 2015;20(3):109–17. https://doi.org/10.1590/2176-9451.20.3.109-117.

    Article  Google Scholar 

  44. Gingival masks for receding gums [Internet]. Available from: https://www.billdorfmandds.com/dental-procedures/gingival-mask/.

  45. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90. https://doi.org/10.1021/acs.chemrev.7b00074.

    Article  Google Scholar 

  46. Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA. Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Technol. 2014;16(119):460–93. https://doi.org/10.6028/jres.119.018.

    Article  Google Scholar 

  47. Cai C, Tey WS, Chen J, Zhu W, Liu X, Liu T, Zhao L, Zhou K. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J Mater Process Technol. 2021;288:116882. https://doi.org/10.1016/j.jmatprotec.2020.116882.

    Article  Google Scholar 

  48. Memon AR, Wang E, Hu J, Egger J, Chen X. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Rev Med Devices. 2020;17(4):345–56. https://doi.org/10.1080/17434440.2020.1736040.

    Article  Google Scholar 

  49. Sapru BL, Mohan SM, Roy SK. Implants in maxillofacial surgery. Med J Armed Forces India. 1999;55(4):285–6. https://doi.org/10.1016/S0377-1237(17)30348-9.

    Article  Google Scholar 

  50. Farré-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J. Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2015;73(12):2408–18. https://doi.org/10.1016/j.joms.2015.04.019.

    Article  Google Scholar 

  51. Chen SH, Lei M, Xie XH, Zheng LZ, Yao D, Wang XL, Li W, Zhao Z, Kong A, Xiao DM, Wang DP, Pan XH, Wang YX, Qin L. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Acta Biomater. 2013;9(5):6711–22. https://doi.org/10.1016/j.actbio.2013.01.024.

    Article  Google Scholar 

  52. Abarrategi A, Moreno-Vicente C, Martínez-Vázquez FJ, Civantos A, Ramos V, Sanz-Casado JV, Martínez-Corriá R, Perera FH, Mulero F, Miranda P, López-Lacomba JL. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PLoS One. 2012;7(3):e34117. https://doi.org/10.1371/journal.pone.0034117.

    Article  Google Scholar 

  53. Cao S, Han J, Sharma N, Msallem B, Jeong W, Son J, Kunz C, Kang HW, Thieringer FM. In vitro mechanical and biological properties of 3D printed polymer composite and β-tricalcium phosphate scaffold on human dental pulp stem cells. Materials (Basel). 2020;13(14):3057. https://doi.org/10.3390/ma13143057.

    Article  Google Scholar 

  54. Ho CM, Ng SH, Yoon YJ. A review on 3D printed bioimplants. Int J Precis Eng Manuf. 2015;16(5):1035–46. https://doi.org/10.1007/s12541-015-0134-x.

    Article  Google Scholar 

  55. Miyanaji H, Zhang S, Lassell A, et al. Process development of porcelain ceramic material with binder jetting process for dental applications. J Mater. 2016;68:831–41. https://doi.org/10.1007/s11837-015-1771-3.

    Article  Google Scholar 

  56. Branco AC, Silva R, Santos T, Jorge H, Rodrigues AR, Fernandes R, Bandarra S, Barahona I, Matos APA, Lorenz K, Polido M, Colaço R, Serro AP, Figueiredo-Pina CG. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater. 2020;36(3):442–55. https://doi.org/10.1016/j.dental.2020.01.006.

    Article  Google Scholar 

  57. Osman RB, van der Veen AJ, Huiberts D, Wismeijer D, Alharbi N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater. 2017;75:521–8. https://doi.org/10.1016/j.jmbbm.2017.08.018.

    Article  Google Scholar 

  58. Devine DM, Hahn J, Richards RG, Gruner H, Wieling R, Pearce SG. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition. J Biomed Mater Res B Appl Biomater. 2013;101(4):591–8. https://doi.org/10.1002/jbm.b.3286.

    Article  Google Scholar 

  59. Han X, Yang D, Yang C, Spintzyk S, Scheideler L, Li P, Li D, Geis-Gerstorfer J, Rupp F. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J Clin Med. 2019;8(2):240. https://doi.org/10.3390/jcm8020240.

    Article  Google Scholar 

  60. Apium medical PEEK 3D printing [Internet]. Available from: https://apiumtec.com/en/apium-m-series-medical-peek-3d-printing.

  61. Evonik biomaterials for medical applications [Internet]. Available from: https://3d-printing.evonik.com/en/additive-manufacturing-materials/biomaterials-medical-applications/peek-filaments.

  62. Nouri A. Titanium foam scaffolds for dental applications. Metallic Foam Bone. 2017;2017:131–60. https://doi.org/10.1016/B978-0-08-101289-5.00005-6.

    Article  Google Scholar 

  63. Saedi S, Turabi AS, Andani MT, Haberland C, Elahinia M, Karaca H. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting. Smart Mater Struct. 2016;25(3):035005. https://doi.org/10.1088/0964-1726/25/3/035005.

    Article  Google Scholar 

  64. Mitchell A, Lafont U, Hołynska M, Semprimoschnig C. Additive manufacturing - a review of 4D printing and future applications. Addit Manuf. 2018;24:606–26. https://doi.org/10.1016/j.addma.2018.10.038.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belsure, N., Parekh, S., Soni, N. (2022). An Overview of 3D Printable Materials for Dental and Craniofacial Applications. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics