Skip to main content

Principles and Applications of Various 3D Scanning Methods for Image Acquisition for 3D Printing Applications in Oral Health Science

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

With the advancement of technology and the integration of digital solutions in treatment planning, clinical prognosis and treatment in oral health science have evolved from a classic two-dimensional (2D) method to a sophisticated three-dimensional (3D) technique. The integration of digital technology in oral health science requires digital 3D images as a primary input data. These 3D digital data can be acquired by different modalities like nonionizing methods (desktop scanning, intraoral scanning, face scanning) to capture the 3D surface data of dento-alveolar-facial tissue and the ionizing methods (conventional CT or CBCT) to capture the 3D data of hard tissue (bone and teeth) of the craniofacial region. In this chapter, the basic principles and their application in dentistry in conjunction with 3D printing of digital surface scanning using desktop scanning, intraoral scanning, and facial scanning and the hard tissue scanning using CBCT are discussed. CBCT along with the state of the art newer ethnologies have improved the level of diagnosis and subsequent care to an paralleled level of accuracy, efficiency, and predictability of the treatment. This chapter provides an in-depth practical understanding of the principles and applications of various 3D scanning methods for 3D digital data acquisition of the craniofacial region in the oral health science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duret F, Blouin JL, Duret B. CAD-CAM in dentistry. J Am Dent Assoc. 1988;117:715–20.

    Article  Google Scholar 

  2. Mormann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006;137(Suppl):7S–13S.

    Article  Google Scholar 

  3. Zimmermann M, Koller C, Rumetsch M, Ender A, Mehl A. Precision of guided scanning procedures for full-arch digital impressions in vivo. J Orofac Orthop. 2017;78:466–71.

    Article  Google Scholar 

  4. Aragón ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38:429–34.

    Article  Google Scholar 

  5. Vecsei B, Joós-Kovács G, Borbély J, Hermann P. Comparison of the accuracy of direct and indirect three-dimensional digitizing processes for CAD/CAM systems–an in vitro study. J Prosthodont Res. 2017;61:177–84.

    Article  Google Scholar 

  6. Nawi N, Mohamed AM, Nor MM, Ashar NA. Correlation and agreement of a digital and conventional method to measure arch parameters. J Orofac Orthop. 2018;79:19–27.

    Article  Google Scholar 

  7. Brignardello-Petersen R. No differences important to patients between orthodontic treatment with customized fixed appliances and conventional appliances. J Am Dent Assoc. 2017;148:e194.

    Article  Google Scholar 

  8. Bae G-S, Kim Y-I, Kim S-S, Park S-B, Son W-S. 3D-printed double-wire bracket for anterior alignment. J Clin Orthod. 2017;51:377–81.

    Google Scholar 

  9. Ojima K, Dan C, Kumagai Y, Schupp W. Invisalign treatment accelerated by photobiomodulation. J Clin Orthod. 2016;50:309–17.

    Google Scholar 

  10. García-Gil I, Cortés-Bretón-Brinkmann J, Jiménez-García J, Peláez-Rico J, Suárez-García MJ. Precision and practical usefulness of intraoral scanners in implant dentistry: a systematic literature review. J Clin Exp Dent. 2020;12(8):e784–93.

    Article  Google Scholar 

  11. Seo KS, Kim S, Kwon JH, Chang JS. Implant digital impressions with intraoral scanners: a literature review. Korean Acad Oral Maxillofac Implantol. 2017;21(1):2–13.

    Article  Google Scholar 

  12. Marfell-Jones M, Stewart A, Olds T. Kinanthropometry IX: Proceedings of the 9th International Conference of the International Society for the Advancement of Kinanthropometry. Milton Park, UK: Taylor & Francis; 2006.

    Book  Google Scholar 

  13. Flugge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop. 2013;144:471–8.

    Article  Google Scholar 

  14. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17:1201–8.

    Article  Google Scholar 

  15. Boeddinghaus M, Breloer ES, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19:2027–34.

    Article  Google Scholar 

  16. Berrendero S, Salido MP, Valverde A, Ferreiroa A, Pradíes G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig. 2016;20:2403–10.

    Article  Google Scholar 

  17. Atieh MA, Ritter AV, Ko CC, Duqum I. Accuracy evaluation of intraoral optical impressions: a clinical study using a reference appliance. J Prosthet Dent. 2017;118:400–5.

    Article  Google Scholar 

  18. Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013;16:11–21.

    Google Scholar 

  19. Kuhr F, Schmidt A, Rehmann P, Wöstmann B. A new method for assessing the accuracy of full arch impressions in patients. J Dent. 2016;55:68–74.

    Article  Google Scholar 

  20. Rhee YK, Huh YH, Cho LR, Park CJ. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J Adv Prosthodont. 2015;7:460–7.

    Article  Google Scholar 

  21. Sousa MV, Vasconcelos EC, Janson G, Garib D, Pinzan A. Accuracy and reproducibility of 3-dimensional digital model measurements. Am J Orthod Dentofac Orthop. 2012;142:269–73.

    Article  Google Scholar 

  22. Reich S, Vollborn T, Mehl A, Zimmermann M. Intraoral optical impression systems – an overview. Int J Comput Dent. 2013;16:143–62.

    Google Scholar 

  23. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod. 2014;48(6):337–47.

    Google Scholar 

  24. Logozzo S, Zanetti E, Franceschini G, Kilpela A, Makynen A. Recent advances in dental optics-Part 1: 3D intraoral scanners for restorative dentistry. Opt Lasers Eng. 2014;54:203–21.

    Article  Google Scholar 

  25. Ciobata ND. Standard tessellation language in rapid prototyping technology. Mater Mech. 2012.

    Google Scholar 

  26. ISO5725-1. Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles and definitions. 1994; ISO 5725-1.

    Google Scholar 

  27. Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016;38:422–8.

    Article  Google Scholar 

  28. Güth J-F, Edelhoff D, Schweiger J, Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig. 2016;20:1487–94.

    Article  Google Scholar 

  29. Li H, Lyu P, Wang Y, Sun Y. Influence of object translucency on the scanning accuracy of a powder-free intraoral scanner: a laboratory study. J Prosthet Dent. 2017;117:93–101.

    Article  Google Scholar 

  30. Kwon M, Cho Y, Kim DW, Kim M, Kim YJ, Chang M. Full-arch accuracy of five intraoral scanners: in vivo analysis of trueness and precision. Korean J Orthod. 2021;51(2):95–104.

    Article  Google Scholar 

  31. Nedelcu R, Olsson P, Nyström I, Rydén J, Thor A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent. 2018;69:110–8.

    Article  Google Scholar 

  32. Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent. 2016;115(3):313–20.

    Article  Google Scholar 

  33. Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop. 2013;144(3):471–8.

    Article  Google Scholar 

  34. Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop. 2014;146(5):673–82.

    Article  Google Scholar 

  35. Sun L, Lee JS, Choo HH, Hwang HS, Lee KM. Reproducibility of an intraoral scanner: a comparison between in-vivo and ex-vivo scans. Am J Orthod Dentofac Orthop. 2018;154(2):305–10.

    Article  Google Scholar 

  36. Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23:515.

    Article  Google Scholar 

  37. Martin CB, Chalmers EV, McIntyre GT, Cochrane H, Mossey PA. Orthodontic scanners: what’s available? J Orthod. 2015;42:136–43.

    Article  Google Scholar 

  38. Chen BT, Lou WS, Chen CC, Lin HC. A 3D scanning system based on low-occlusion approach. In: Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062), Ottawa, ON, Canada, 8 October 1999. Piscataway, NJ: IEEE; 1999. p. 506–15.

    Google Scholar 

  39. Barreto MS, Faber J, Vogel CJ, Araujo TM. Reliability of digital orthodontic setups. Angle Orthod. 2016;86:255–9.

    Article  Google Scholar 

  40. Im J, Cha JY, Lee KJ, Yu HS, Hwang CJ. Comparison of virtual and manual tooth setups with digital and plaster models in extraction cases. Am J Orthod Dentofac Orthop. 2014;145:434–42.

    Article  Google Scholar 

  41. Srinivasan M, Kamnoedboon P, McKenna G, Angst L, Schimmel M, Özcan M, Müller F. CAD-CAM removable complete dentures: a systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes. J Dent. 2021;113:103777.

    Article  Google Scholar 

  42. Srinivasan M, Schimmel M, Naharro M, O’Neill C, McKenna G, Müller F. CAD/CAM milled removable complete dentures: time and cost estimation study. J Dent. 2019;80:75–9.

    Article  Google Scholar 

  43. Herpel C, Tasaka A, Higuchi S, Finke D, Kühle R, Odaka K, Rues S, Lux CJ, Yamashita S, Rammelsberg P, Schwindling FS. Accuracy of 3D printing compared with milling-a multi-center analysis of try-in dentures. J Dent. 2021;110:103681.

    Article  Google Scholar 

  44. Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc. 2014;145:542–51.

    Article  Google Scholar 

  45. Sawase T, Kuroshima S. The current clinical relevancy of intraoral scanners in implant dentistry. Dent Mater J. 2020;39(1):57–61.

    Article  Google Scholar 

  46. van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7(8):e43312.

    Article  Google Scholar 

  47. Mörmann W, Brandestini M, Ferru A, Lutz F, Krejci I. Marginal adaptation of adhesive porcelain inlays in vitro. Schweiz Monatsschr Zahnmed. 1985;95:1118.

    Google Scholar 

  48. Joós-Kovács G, Vecsei B, Körmendi S, Gyarmathy VA, Borbély J, Hermann P. Trueness of CAD/CAM digitization with a desktop scanner - an in vitro study. BMC Oral Health. 2019;19(1):280.

    Article  Google Scholar 

  49. Taneva E, Kusnoto B, Evans CA. 3D scanning, imaging, and printing in orthodontics. In: Issues in contemporary orthodontics, vol. 148(5). Rijeka, Croatia: IntechOpen; 2015. p. 862–7. Available from: https://www.intechopen.com/chapters/48165.

    Google Scholar 

  50. Correia GD, Habib FA, Vogel CJ. Tooth-size discrepancy: a comparison between manual and digital methods. Dental Press J Orthod. 2014;19(4):107–13. https://doi.org/10.1590/2176-9451.19.4.107-113.oar.

    Article  Google Scholar 

  51. Zilberman O, Huggare JAV, Parikakis KA. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod. 2003;73(3):301–6.

    Google Scholar 

  52. Garino F, Garino GB. Comparison of dental arch measurements between stone and digital casts. World J Orthod. 2002;3(3):1–5.

    Google Scholar 

  53. Palmer NG, Yacyshyn JR, Northcott HC, Nebbe B, Major PW. Perceptions and attitudes of Canadian orthodontists regarding digital and electronic technology. Am J Orthod Dentofac Orthop. 2005;128(2):163–7.

    Article  Google Scholar 

  54. Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW. Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofac Orthop. 2006;129(6):794–803.

    Article  Google Scholar 

  55. Marcel T. Three-dimensional on-screen virtual models. Am J Orthod Dentofac Orthop. 2001;119(6):666–8.

    Article  Google Scholar 

  56. Mayers M, Fitestone AR, Rashid R, Vig KWL. Comparison of peer assessment rating (PAR) index scores of plaster and computer-based digital models. Am J Orthod Dentofac Orthop. 2005;128(4):431–4.

    Article  Google Scholar 

  57. Horton HMI, Miller JR, Gaillard PR, Larson BE. Technique comparison for efficient orthodontic tooth measurements using digital models. Angle Orthod. 2010;80(2):254–61.

    Article  Google Scholar 

  58. Jansen CE. Understanding the potential of digital intraoral and benchtop scanning workflows. Compend Contin Educ Dent. 2015;36(10):726–31; quiz732.

    Google Scholar 

  59. Koch GK, Gallucci GO, Lee SJ. Accuracy in the digital workflow: from data acquisition to the digitally milled cast. J Prosthet Dent. 2016;115:749–54.

    Article  Google Scholar 

  60. Vlaar ST, van der Zel JM. Accuracy of dental digitizers. Int Dent J. 2006;56:301–9.

    Article  Google Scholar 

  61. Chen Z, Linghu C, Yu K, Zhu J, Luo H, Qian C, Chen Y, Du Y, Zhang S, Song J. Fast digital patterning of surface topography toward three-dimensional shape-changing structures. ACS Appl Mater Interfaces. 2019;11:48412–8.

    Article  Google Scholar 

  62. Jedliński M, Mazur M, Grocholewicz K, Janiszewska-Olszowska J. 3D scanners in orthodontics—current knowledge and future perspectives—a systematic review. Int J Environ Res Public Health. 2021;18:1121. https://doi.org/10.3390/rs13030374.

    Article  Google Scholar 

  63. https://www.motionviewllc.com/desk-top-scanner. Accessed 21 Oct 2021.

  64. https://www.inn-soft.com/scanner. Accessed 21 Oct 2021.

  65. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: a literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179–85.

    Article  Google Scholar 

  66. Farkas LG, Katic MJ, Forrest CR, et al. International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg. 2005;16:615–46.

    Article  Google Scholar 

  67. Holberg C, Schwenzer K, Mahaini L, Rudzki-Janson I. Accuracy of facial plaster casts. Angle Orthod. 2006;76(4):605–11.

    Google Scholar 

  68. Zogheib T, Jacobs R, Bornstein MM, et al. Comparison of 3D scanning versus 2D photography for the identification of facial soft-tissue landmarks. Open Dent J. 2018;12:61–71.

    Article  Google Scholar 

  69. Ireland AJ, McNamara C, Clover MJ, et al. 3D surface imaging in dentistry – what we are looking at. Br Dent J. 2008;205(7):387–92.

    Article  Google Scholar 

  70. Da Silveira AC, Martinez O, Da Silveira D, Daw JL Jr, Cohen M. Three-dimensional technology for documentation and record keeping for patients with facial clefts. Clin Plast Surg. 2004;31(2):141–8.

    Article  Google Scholar 

  71. Karatas OH, Toy E. Three-dimensional imaging techniques: a literature review. Eur J Dent. 2014;8(1):132–40.

    Article  Google Scholar 

  72. Lekakis G, Claes P, Hamilton G, Hellings P. Three-dimensional surface imaging and the continuous evolution of preoperative and postoperative assessment in rhinoplasty. Facial Plast Surg. 2016;32(1):088–94.

    Article  Google Scholar 

  73. Mai HN, Kim J, Choi YH, Lee DH. Accuracy of portable face-scanning devices for obtaining three-dimensional face models: a systematic review and meta-analysis. Int J Environ Res Public Health. 2020;18(1):94.

    Article  Google Scholar 

  74. Chong Y, Liu X, Shi M, Huang J, Yu N, Long X. Three-dimensional facial scanner in the hands of patients: validation of a novel application on iPad/iPhone for three-dimensional imaging. Ann Transl Med. 2021;9(14):1115.

    Article  Google Scholar 

  75. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: Part I. J Orthod. 2004;31(1):62–70.

    Article  Google Scholar 

  76. Naini FB, Akram S, Kepinska J, Garagiola U, McDonald F, Wertheim D. Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry. Maxillofac Plast Reconstr Surg. 2017;39(1):23.

    Article  Google Scholar 

  77. Alshammery FA. Three dimensional (3D) imaging techniques in orthodontics-an update. J Family Med Prim Care. 2020;9(6):2626–30.

    Article  Google Scholar 

  78. Arridge S, Moss JP, Linney AD, James DR. Three dimensional digitization of the face and skull. J Maxillofac Surg. 1985;13(3):136–43.

    Article  Google Scholar 

  79. Baik HS, Lee HJ, Lee KJ. A proposal for soft tissue landmarks for craniofacial analysis using 3-dimensional laser scan imaging. World J Orthod. 2006;7(1):7–14.

    Google Scholar 

  80. Kau CH, Richmond S, Zhurov AI, et al. Reliability of measuring facial morphology with a 3-dimensional laser scanning system. Am J Orthod Dentofac Orthop. 2005;128(4):424–30.

    Article  Google Scholar 

  81. Kovacs L, Zimmermann A, Brockmann G, et al. Accuracy and precision of the three dimensional assessment of the facial surface using a 3-D laser scanner. IEEE Trans Med Imaging. 2006;25(6):742–54.

    Article  Google Scholar 

  82. Germec-Cakan D, Canter HI, Nur B, Arun T. Comparison of facial soft tissue measurements on three-dimensional images and models obtained with different methods. J Craniofac Surg. 2010;21(5):1393–9.

    Article  Google Scholar 

  83. Djordjevic J, Toma AM, Zhurov AI, Richmond S. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning. Eur J Orthod. 2014;36(2):125–32.

    Article  Google Scholar 

  84. Ma L, Xu T, Lin J. Validation of a three-dimensional facial scanning system based on structured light techniques. Comput Methods Prog Biomed. 2009;94(3):290–8.

    Article  Google Scholar 

  85. Alkhayer A, Becsei R, Hegedűs L, et al. Evaluation of the soft tissue changes after rapid maxillary expansion using a handheld three-dimensional scanner: a prospective study. Int J Environ Res Public Health. 2021;18(7):3379.

    Article  Google Scholar 

  86. Amirav I, Luder AS, Halamish A, et al. Design of aerosol face masks for children using computerized 3D face analysis. J Aerosol Med Pulm Drug Deliv. 2014;27(4):272–8.

    Article  Google Scholar 

  87. Amirav I, Masumbuko CK, Hawkes MT, et al. 3D analysis of child facial dimensions for design of medical devices in low-middle income countries (LMIC). PLoS One. 2019;14(5):e0216548.

    Article  Google Scholar 

  88. Kimmel R. Numerical geometry of images: theory, algorithms, and applications. New York: Springer; 2003.

    Google Scholar 

  89. Rubinstein O, Honen Y, Bronstein AM, Bronstein MM, Kimmel R. 3D-color video camera. In: 12th International Conference on Computer Vision Workshops, ICCV Workshops. New York: IEEE; 2009. p. 1505–9.

    Chapter  Google Scholar 

  90. Meyer-Marcotty P, Stellzig-Eisenhauer A, Bareis U, Hartmann J, Kochel J. Three-dimensional perception of facial asymmetry. Eur J Orthod. 2011;33(6):647–53.

    Article  Google Scholar 

  91. Modabber A, Peters F, Kniha K, et al. Evaluation of the accuracy of a mobile and a stationary system for three-dimensional facial scanning. J Craniomaxillofac Surg. 2016;44(10):1719–24.

    Article  Google Scholar 

  92. Ras F, Habets LL, van Ginkel FC, Prahl-Andersen B. Quantification of facial morphology using stereophotogrammetry—demonstration of a new concept. J Dent. 1996;24(5):369–74.

    Article  Google Scholar 

  93. Liu C, Artopoulos A. Validation of a low-cost portable 3-dimensional face scanner. Imaging Sci Dent. 2019;49(1):35–43.

    Article  Google Scholar 

  94. Plooij JM, Swennen GR, Rangel FA, et al. Evaluation of reproducibility and reliability of 3D soft tissue analysis using 3D stereophotogrammetry. Int J Oral Maxillofac Surg. 2009;38(3):267–73.

    Article  Google Scholar 

  95. Weinberg SM, Naidoo S, Govier DP, Martin RA, Kane AA, Marazita ML. Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry. J Craniofac Surg. 2006;17(3):477–83.

    Article  Google Scholar 

  96. Aynechi N, Larson BE, Leon-Salazar V, Beiraghi S. Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod. 2011;81(2):245–52.

    Article  Google Scholar 

  97. Artopoulos A, Buytaert JA, Dirckx JJ, Coward TJ. Comparison of the accuracy of digital stereophotogrammetry and projection moire profilometry for three-dimensional imaging of the face. Int J Oral Maxillofac Surg. 2014;43(5):654–62.

    Article  Google Scholar 

  98. Dindaroğlu F, Kutlu P, Duran GS, Görgülü S, Aslan E. Accuracy and reliability of 3D stereophotogrammetry: a comparison to direct anthropometry and 2D photogrammetry. Angle Orthod. 2016;86(3):487–94.

    Article  Google Scholar 

  99. Zhao YJ, Xiong YX, Yang HF, Wang Y. Evaluation of measurement accuracy of three facial scanners based on different scanning principles. Beijing Da Xue Xue Bao. 2014;46(1):76–80.

    Google Scholar 

  100. Zhao YJ, Xiong YX, Wang Y. Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy. PLoS One. 2017;12(1):e0169402.

    Article  Google Scholar 

  101. Ghoddousi H, Edler R, Haers P, Wertheim D, Greenhill D. Comparison of three methods of facial measurement. Int J Oral Maxillofac Surg. 2007;36(3):250–8.

    Article  Google Scholar 

  102. Ceinos R, Tardivo D, Bertrand MF, Lupi-Pegurier L. Inter- and intra-operator reliability of facial and dental measurements using 3D-stereophotogrammetry. J Esthet Restor Dent. 2016;28(3):178–89.

    Article  Google Scholar 

  103. Ye H, Lv L, Liu Y, Liu Y, Zhou Y. Evaluation of the accuracy, reliability, and reproducibility of two different 3D face-scanning systems. Int J Prosthodont. 2016;29(3):213–8.

    Article  Google Scholar 

  104. Kusnoto B, Evans CA. Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofac Orthop. 2002;122(4):342–8.

    Article  Google Scholar 

  105. Knoops PG, Beaumont CA, Borghi A, et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg. 2017;70(4):441–9.

    Article  Google Scholar 

  106. Rudy HL, Wake N, Yee J, Garfein ES, Tepper OM. Three-dimensional facial scanning at the fingertips of patients and surgeons: accuracy and precision testing of iPhone X three-dimensional scanner. Plast Reconstr Surg. 2020;146(6):1407–17.

    Article  Google Scholar 

  107. 3-D digitizing-breakthrough in process innovation VIVID 910 PET: Polygon editing software, EAT: Easy alignment target-based registration Compatible with all major 3D software for Modeling and CAD, CAM and CAT. Konica Minolta Sensing. Inc. 2001, 2002. http://konicaminolta.us/3d.

  108. Ritschl LM, Roth M, Fichter AM, et al. The possibilities of a portable low-budget three-dimensional stereophotogrammetry system in neonates: a prospective growth analysis and analysis of accuracy. Head Face Med. 2018;14(1):11.

    Article  Google Scholar 

  109. Verhulst A, Hol M, Vreeken R, Becking A, Ulrich D, Maal T. Three-dimensional imaging of the face: a comparison between three different imaging modalities. Aesthet Surg J. 2018;38(6):579–85.

    Article  Google Scholar 

  110. Sade Hoefert C, Bacher M, Herberts T, Krimmel M, Reinert S, Göz G. 3D soft tissue changes in facial morphology in patients with cleft lip and palate and class III mal occlusion under therapy with rapid maxillary expansion and delaire facemask. J Orofac Orthop. 2010;71(2):136–51.

    Article  Google Scholar 

  111. Hoefert CS, Bacher M, Herberts T, et al. Implementing a superimposition and measurement model for 3D sagittal analysis of therapy-induced changes in facial soft tissue: a pilot study. J Orofac Orthop. 2010;71(3):221–34.

    Article  Google Scholar 

  112. Erten O, Yılmaz BN. Three-dimensional imaging in orthodontics. Turk J Orthod. 2018;31(3):86–94.

    Article  Google Scholar 

  113. Kau CH, Cronin A, Durning P, Zhurov AI, Sandham A, Richmond S. A new method for the 3D measurement of postoperative swelling following orthognathic surgery. Orthod Craniofac Res. 2006;9(1):31–7.

    Article  Google Scholar 

  114. Staderini E, Patini R, Camodeca A, Guglielmi F, Gallenzi P. Three-dimensional assessment of morphological changes following nasoalveolar molding therapy in cleft lip and palate patients: a case report. Dent J (Basel). 2019;7(1):27.

    Article  Google Scholar 

  115. Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent. 2004;92(6):591–5.

    Article  Google Scholar 

  116. Lin WS, Harris BT, Phasuk K, Llop DR, Morton D. Integrating a facial scan, virtual smile design, and 3D virtual patient for treatment with CAD-CAM ceramic veneers: a clinical report. J Prosthet Dent. 2018;119(2):200–5.

    Article  Google Scholar 

  117. Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial genetics: a brief overview. Front Genet. 2018;9:462.

    Article  Google Scholar 

  118. Lambros V, Amos G. Three-dimensional facial averaging: a tool for understanding facial aging. Plast Reconstr Surg. 2016;138(6):980e–2e.

    Article  Google Scholar 

  119. Tanikawa C, Takata S, Takano R, Yamanami H, Edlira Z, Takada K. Functional decline in facial expression generation in older women: a cross-sectional study using three-dimensional morphometry. PLoS One. 2019;14(7):e0219451.

    Article  Google Scholar 

  120. Tanikawa C, Zere E, Takada K. Sexual dimorphism in the facial morphology of adult humans: a three-dimensional analysis. Homo. 2016;67(1):23–49.

    Article  Google Scholar 

  121. Tanikawa C, Akcam MO, Gokalp H, Zere E, Takada K. Population affinity and variation of sexual dimorphism in three-dimensional facial forms: comparisons between Turkish and Japanese populations. Sci Rep. 2021;11(1):16634.

    Article  Google Scholar 

  122. Tian S, Dai N, Zhang B, Yuan F, Yu Q, Xiaosheng Cheng X. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. New York: IEEE; 2019. p. 84817–28.

    Google Scholar 

  123. Lian C, Wang L, Wu TH, et al. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans Med Imaging. 2020;39(7):2440–50.

    Article  Google Scholar 

  124. Nauwelaers N, Matthews H, Fan Y, et al. Exploring palatal and dental shape variation with 3D shape analysis and geometric deep learning. Orthod Craniofac Res. 2021; https://doi.org/10.1111/ocr.12521.

  125. Hung K, Yeung AWK, Tanaka R, Bornstein MM. Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice. Int J Environ Res Public Health. 2020;17(12):4424.

    Article  Google Scholar 

  126. Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S102–21.

    Google Scholar 

  127. Abramovitch K, Rice DD. Basic principles of cone beam computed tomography. Dent Clin N Am. 2014;58(3):463–84.

    Article  Google Scholar 

  128. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224.

    Article  Google Scholar 

  129. Kamio T, Suzuki M, Asaumi R, Kawai T. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy. 3D Print Med. 2020;6(1):17.

    Article  Google Scholar 

  130. Lo Giudice A, Ronsivalle V, Grippaudo C, Lucchese A, Muraglie S, Lagravère MO, et al. One step before 3D printing—evaluation of imaging software accuracy for 3-dimensional analysis of the mandible: a comparative study using a surface-to-surface matching technique. Materials (Basel). 2020;13(12):2798.

    Article  Google Scholar 

  131. Kim YH, Jung B-Y, Han S-S, Woo C-W. Accuracy evaluation of 3D printed interim prosthesis fabrication using a CBCT scanning based digital model. PLoS One. 2020;15(10):e0240508.

    Article  Google Scholar 

  132. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT - PubMed [Internet]. [cited 2021 Oct 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/23166362/

  133. Kamburoğlu K. Use of dentomaxillofacial cone beam computed tomography in dentistry. World J Radiol. 2015;7(6):128–30.

    Article  Google Scholar 

  134. Carter L, Farman AG, Geist J, Scarfe WC, Angelopoulos C, Nair MK, et al. American Academy of Oral and Maxillofacial Radiology executive opinion statement on performing and interpreting diagnostic cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2008;106(4):561–2.

    Article  Google Scholar 

  135. Horner K, Islam M, Flygare L, Tsiklakis K, Whaites E. Basic principles for use of dental cone beam computed tomography: consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol. 2009;38(4):187–95.

    Article  Google Scholar 

  136. Jaju PP, Jaju SP. Cone-beam computed tomography: time to move from ALARA to ALADA. Imaging Sci Dent. 2015;45(4):263–5.

    Article  Google Scholar 

  137. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing—encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172.

    Article  Google Scholar 

  138. Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A review of 3D printing in dentistry: technologies, affecting factors, and applications. Scanning. 2021;2021:e9950131.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Indian Council of Medical Research (ICMR), New Delhi, for providing extramural research grant for research project (code I-1069), which helped to generate data for this book chapter.

Authors are thankful to Mr. Netrapal (Dental technician at Division of Orthodontics and Dentofacial Deformities, CDER, AIIMS, New Delhi) for assistance in generation of images for this chapter, Dr. Vandita Vats and Dr. Okram DevDas Singh for providing inputs from general dental practice viewpoint needs of 3D imaging, and Mr. Eugene Shumilov, (Diagnocat, Inc., San Francisco, USA) for providing complementary access to generate data for this chapter.

In addition, authors are thankful to 3dMD Company (3dMD LLC, Atlanta, GA, USA) and GIP Lab (GIP Lab, Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa, Israel) for assistance in providing the images for the facial scanning on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, YJ. et al. (2022). Principles and Applications of Various 3D Scanning Methods for Image Acquisition for 3D Printing Applications in Oral Health Science. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics