Skip to main content
Log in

Correlation and agreement of a digital and conventional method to measure arch parameters

Korrelation und Übereinstimmung von digitaler und konventioneller Bestimmung von Zahnbogenparametern

  • Original Paper
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement.

Methods

A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson’s correlation, respectively. The Bland–Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models.

Results

No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p < 0.01) between all digital and manual measurements. Furthermore, a positive agreement between digital and manual measurements of the arch width (90–96%), arch length and space analysis (95–99%) were also distinguished using the Bland–Altman method.

Conclusion

These results demonstrate that 3D blue light scanning and measurement software are able to precisely produce 3D digital model and measure arch width, arch length, and space analysis. The 3D digital model is valid to be used in various clinical applications.

Zusammenfassug

Zielsetzung

Ziel der vorgestellten Studie war es, Reliabilität und Validität digitaler Messungen von Bogenparametern im Vergleich zu konventionellen Messungen zu ermitteln.

Methoden

Insgesamt 111 Gipsmodelle von Down-Syndrom-Patienten wurden mit einem auf Blaulichttechnologie basierenden 3-D-Scanner digitalisiert. Anschließend wurden digitale (Geomagic Studio 2014 Software; 3D Systems, Rock Hill/SC, USA) und manuelle (digitale Schieblehre; Tuten, Deutschland) Messungen definierter Parameter an digitalen Modellen und Gipsmodellen vorgenommen. Alle Messungen wurden zweimal wiederholt, um auf Grundlage der Intraklassenkoeffizienten die Intrauntersucherreliabilität zu validieren. Zur statistischen Auswertung dienten der unabhängige Student-t-Test und der Pearson-Korrelationskoeffizient, der Bland–Altmann-Test zur Evaluierung der Übereinstimmung zwischen den Messungen an digitalen bzw. an Gipsmodellen.

Ergebnisse

Bei der Messung von Länge und Breite der Kieferbögen sowie bei der Platzanalyse wurden keine statistisch signifikanten Unterschiede ermittelt (p > 0,05). Zudem zeigten sich für alle Parameter signifikante Korrelationskoeffizienten (r ≥ 0,972; p < 0,01) zwischen digitalen und manuellen Messungen. Weiterhin bestand nach Einsatz der Bland–Altmann-Methode eine positive Übereinstimmung zwischen digitalen und manuellen Messungen der Breite (90–96%) und Länge der Kieferbögen sowie der Platzanalyse (95–99%).

Schlussfolgerung

Die vorgestellten Ergebnisse zeigen, dass mit 3-D-Blaulicht-Scanning und einer Mess-Software digitale 3-D-Modelle präzise erstellt werden können, sich Kieferbögen in Länge wie Breite genau vermessen und sich die Platzverhältnisse präzise analysieren lassen. Damit ist das digitale 3-D-Modell für unterschiedliche klinische Anwendungen validiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdul Rahim FS, Mohamed AM, Marizan Nor M, Saub R (2014) Malocclusion and orthodontic treatment need evaluated among subjects with Down syndrome using the Dental aesthetic Index (DAI). Angle Orthod 84:600–606

    Article  PubMed  Google Scholar 

  2. Abizadeh N, Moles DR, O’Neill J, Noar JH (2012) Digital versus plaster study models: how accurate and reproducible are they? J Orthod 39:151–159

    Article  PubMed  Google Scholar 

  3. Akyalcin S, Dyer DJ, English JD, Sar D (2013) Comparison of 3-dimensional dental models from different sources: diagnostic accuracy and surface registration analysis. Am J Orthod Dentofac Orthop 144:831–837

    Article  Google Scholar 

  4. Asquith J, Gillgrass T, Mossey P (2007) Three-dimensional imaging of orthodontic models: a pilot study. Eur J Orthod 29:517–522

    Article  PubMed  Google Scholar 

  5. Asquith J, McIntyre G (2012) Dental arch relationships on three-dimensional digital study models and conventional plaster study models for patients with unilateral cleft lip and palate. Cleft Palate Craniofac J 49:530–534

    Article  PubMed  Google Scholar 

  6. Bootvang K, Liu Z, McGrath C, Hagg U, Wong RWK, Bendeus M, Yeung S (2010) Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 32:589–595

    Article  Google Scholar 

  7. El-Zanaty HM, El-Beialy AR, El-Ezz AMA, Attia KH, El-Bialy AR, Mostafa YA (2010) Three-dimensional dental measurements: an alternative to study models. Am J Orthod Dentofac Orthop 137:259–265

    Article  Google Scholar 

  8. Fleming PS, Marinho V, Johal A (2011) Orthodontic measurements on digital study models compared with study models: a systematic review. Orthod Craniofac Res 14:1–16

    Article  PubMed  Google Scholar 

  9. Online Calculator Software, Raosoft, Inc. 2004. http://www.raosoft.com/samplesize.html. Accessed 26 June 2011

  10. Hunter WS, Priest WS (1960) Errors and discrepancies in measurement of tooth size. J Dent Res 39:405–414

    Article  PubMed  Google Scholar 

  11. Keating AP, Kox J, Bibb R, Zhurov AI (2008) A comparison of plaster, digital and reconstructed study model accuracy. J Orthod 35:191–201

    Article  PubMed  Google Scholar 

  12. Keim RG, Gottlieb EL, Nelson AH, Vogels DS III (2008) 2008 JCO study of orthodontic diagnosis and treatment procedures, part 1: results and trends. J Clin Orthod 42:625–640

    PubMed  Google Scholar 

  13. Kim J, Heo G, Lagravere MO (2014) Accuracy of laser-scanned models compared to study models and cone-beam computed tomography. Angle Orthod 84:443–450

    Article  PubMed  Google Scholar 

  14. Kumar AA, Phillip A, Kumar S, Rawat A, Priya S, Kumaran V (2015) Digital model as an alternative to plaster model in assessment of space analysis? J Pharm Bioallied Sci 7(Suppl 2):S465–S469

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofac Orthop 136:16.e1–16.e4

    Google Scholar 

  16. Mestrovic S, Miksic M, Stefanac-Papic J, Stipetic J (2002) Prevalence of malocclusion in patients with Down’s syndrome. Acta Stomatol Croat 36:239–241

    Google Scholar 

  17. Moreira DD, Gribel BF, Torres GDR, Vanconcelos KF, De Freitas DQ, Ambrosano GMB (2014) Reliability of measurements on virtual models obtained from scanning of impressions and conventional study models. Braz J Oral Sci 13:297–302

    Article  Google Scholar 

  18. Mullen SR, Martin CA, Ngan P, Gladwin M (2007) Accuracy of space analysis with emodels and study models. Am J Orthod Dentofac Orthop 132:346–352

    Article  Google Scholar 

  19. Naidu D, Freer TJ (2013) Validity, reliability, and reproducibility of the iOC intraoral scanner: a comparison of tooth widths and Bolton ratios. Am J Orthod Dentofac Orthop 144:304–310

    Article  Google Scholar 

  20. Oliveira ACB, Paiva SM, Campos MR, Czeresnia D (2007) Factors associated with malocclusions and adolescents with Down syndrome. Am J Orthod Dentofacial Orthop 133:489.e1–489.e8

    Google Scholar 

  21. Peluso MJ, Josell SD, Levine SW, Lorei BJ (2004) Digital models: an introduction. Semin Orthod 10:226–238

    Article  Google Scholar 

  22. Quimby ML, Vig KWL, Rashid RG, Firestone AR (2004) The accuracy and reliability of measurements made on computer–based digital models. Angle Orthod 74:298–303

    PubMed  Google Scholar 

  23. Radeke J, Von der Wense C, Lapatki BG (2014) Comparison of orthodontic measurements on dental plaster casts and 3D scans. J Orofac Orthop 75:264–274

    Article  PubMed  Google Scholar 

  24. Reuschl RP, Heuer W, Stiesch M, Wenzel D, Dittmer MP (2016) Reliability and validity of measurements on digital models and study models. Eur J Orthod 38:22–26

    Article  PubMed  Google Scholar 

  25. Rheude B, Sadowsky PL, Ferriera A, Jacobson A (2005) An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod 75:300–304

    PubMed  Google Scholar 

  26. Santoro M, Ayoub ME, Pardi VA, Cangialosi TJ (2003) Comparison of measurements made on digital and study models. Am J Orthod Dentofac Orthop 124:101–105

    Article  Google Scholar 

  27. Shahid F, Alam MK, Khamis MF, Muroaka R, Keisuke N, Norisama O (2014) validity and reliabilty of digital model measurements: a digital stereomicroscopic study. J Hard Tissue Biol 23:439–444

    Article  Google Scholar 

  28. Shastry S, Park JH (2014) Evaluation of the use of digital study models in postgraduate orthodontic programs in the United States and Canada. Angle Orthod 84:62–67

    Article  PubMed  Google Scholar 

  29. Sousa MVS, Vasconcelos EC, Janson G, Garib D, Pinzan A (2012) Accuracy and reproducibility of 3-dimensional digital model measurements. Am J Orthod Dentofac Orthop 142:269–273

    Article  Google Scholar 

  30. Watanabe-Kanno GA, Abrao J, Miasiro Juniou H, Sanchez-Ayala A, Lagravere MO (2009) Reproducibility, reliability and validity of measurements obtained from Cecile3 digital models. Braz Oral Res 23:288–295

    Article  PubMed  Google Scholar 

  31. Whetten JL, Williamson PC, Heo G, Varnhagen C, Major PW (2006) Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofac Orthop 130:485–491

    Article  Google Scholar 

  32. Wiranto MG, Engelbrect WP, Nolthenius HET, Van der Meer WJ, Ren Y (2013) Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop 143:140–147

    Article  Google Scholar 

  33. Zilberman O, Huggare JAV, Parikakis KA (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 73:301–306

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Fundamental Research Grant Scheme Ministry of Higher Education (FRGS/1/2012/SKK11/UKM/02/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alizae Marny Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Dr. Alizae Marny Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawi, N., Mohamed, A.M., Marizan Nor, M. et al. Correlation and agreement of a digital and conventional method to measure arch parameters. J Orofac Orthop 79, 19–27 (2018). https://doi.org/10.1007/s00056-017-0111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-017-0111-3

Keywords

Schlüsselwörter

Navigation