Skip to main content

Future of 3D Printing in Oral Health Sciences

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

3D printing or additive manufacturing is rapidly becoming popular in the oral sciences. Though still in its infancy, its widespread adoption is aided by precision, decreased material requirement, and reduced need for manual labor. Studies today are only beginning to scratch the surface of its potential. Additive manufacturing can be employed by researchers and clinicians to develop a highly customized approach to dental treatment and education. Advances in technology have also led to the development of stimuli-responsive smart materials (4D printing) that can change the face of dentistry as we know it. There are, however, certain barriers that need to be overcome. This chapter aims to review the current uses of 3D printing in the field of dentistry and suggests the potential use of this technology for the future in some branches of the oral sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rice DD, Abramovitch K, Olson GW, Christiansen EL. Data management practices of cone-beam computed tomography volumes: an exploratory user survey. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:e100–7.

    Article  Google Scholar 

  2. Shah PH, Venkatesh R. Dental students’ knowledge and attitude towards cone-beam computed tomography: an Indian scenario. Indian J Dent Res. 2016;27:581–5.

    Article  Google Scholar 

  3. Shim Y-S, Kim A-H, Choi J-E, An S-Y. Use of three-dimensional computed tomography images in the dental care of children and adolescents in Korea. Technol Health Care. 2014;22:333–7.

    Article  Google Scholar 

  4. Setzer FC, Hinckley N, Kohli MR, Karabucak B. A survey of cone-beam computed tomographic use among endodontic practitioners in the United States. J Endod. 2017;43:699–704.

    Article  Google Scholar 

  5. Tran D, Nesbit M, Petridis H. Survey of UK dentists regarding the use of CAD/CAM technology. Br Dent J. 2016;221:639–44.

    Article  Google Scholar 

  6. Chaar MS, Passia N, Kern M. Long-term clinical outcome of posterior metal-ceramic crowns fabricated with direct metal laser-sintering technology. J Prosthodont Res. 2020;64:354–7.

    Article  Google Scholar 

  7. Belhouideg S. Impact of 3D printed medical equipment on the management of the Covid19 pandemic. Int J Health Plann Manag. 2020;35:1014–22.

    Article  Google Scholar 

  8. Pedraja J, Maestre JM, Rabanal JM, Morales C, Aparicio J, Del Moral I. Role of 3D printing for the protection of surgical and critical care professionals in the COVID-19 pandemic. Rev Esp Anestesiol Reanim. 2020;67:417–24.

    Article  Google Scholar 

  9. Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J Biomed Mater Res A. 2017;105:619–39.

    Article  Google Scholar 

  10. Lin L, Fang Y, Liao Y, Chen G, Gao C, Zhu P. 3D printing and digital processing techniques in dentistry: a review of literature. Adv Eng Mater. 2019;21:1801013.

    Article  Google Scholar 

  11. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219:521–9.

    Article  Google Scholar 

  12. Athirasala A, Tahayeri A, Thrivikraman G, França CM, Monteiro N, Tran V, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell-laden scaffolds for regenerative dentistry. Biofabrication. 2018;10:024101.

    Article  Google Scholar 

  13. Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J. 2009;15:216–25.

    Article  Google Scholar 

  14. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137:1289–96.

    Article  Google Scholar 

  15. Ebert J, Ozkol E, Zeichner A, Uibel K, Weiss O, Koops U, et al. Direct inkjet printing of dental prostheses made of zirconia. J Dent Res. 2009;88:673–6.

    Article  Google Scholar 

  16. Gao B, Wu J, Zhao X, Tan H. Fabricating titanium denture base plate by laser rapid forming [Internet]. undefined. 2009 [cited 2021 Jan 14]. Available from: https://www.proquest.com/docview/214011570.

  17. Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J. 2012;31:40–6.

    Article  Google Scholar 

  18. Sun Y, Lü P, Wang Y. Study on CAD&RP for a removable complete denture. Comput Methods Prog Biomed. 2009;93:266–72.

    Article  Google Scholar 

  19. Eggbeer D, Bibb R, Williams R. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proc Inst Mech Eng H IMECHE. 2005;219:195–202.

    Article  Google Scholar 

  20. Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyp J. 2012;18:318–23.

    Article  Google Scholar 

  21. Wassermann A, Kaiser M, Strub JR. Clinical long-term results of VITA In-Ceram Classic crowns and fixed partial dentures: a systematic literature review. Int J Prosthodont. 2006;19:355–63.

    Google Scholar 

  22. Ozer F, Mante FK, Chiche G, Saleh N, Takeichi T, Blatz MB. A retrospective survey on long-term survival of posterior zirconia and porcelain-fused-to-metal crowns in private practice [Internet]. Quintessence Int; 2014 [cited 2021 Jan 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/24392493/.

  23. Reitemeier B, Hänsel K, Range U, Walter MH. Prospective study on metal-ceramic crowns in private practice settings: 20-year results. Clin Oral Investig. 2019;23:1823–8.

    Article  Google Scholar 

  24. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater. 2008;24:1311–5.

    Article  Google Scholar 

  25. Tamac E, Toksavul S, Toman M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal-ceramic crowns. J Prosthet Dent. 2014;112:909–13.

    Article  Google Scholar 

  26. Huang Z, Zhang L, Zhu J, Zhang X. Clinical marginal and internal fit of metal-ceramic crowns fabricated with a selective laser melting technology. J Prosthet Dent. 2015;113:623–7.

    Article  Google Scholar 

  27. Freifrau von Maltzahn N, Bernhard F, Kohorst P. Fitting accuracy of ceramic veneered Co-Cr crowns produced by different manufacturing processes. J Adv Prosthodont. 2020;12:100–6.

    Article  Google Scholar 

  28. Gholamrezaei K, Vafaee F, Afkari BF, Firouz F, Seif M. Fit of cobalt-chromium copings fabricated by the selective laser melting technology and casting method: a comparative evaluation using a profilometer. Dent Res J (Isfahan). 2020;17:200–7.

    Article  Google Scholar 

  29. Ullattuthodi S, Cherian KP, Anandkumar R, Nambiar MS. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: a comparative in vitro study. J Indian Prosthodont Soc. 2017;17:373–80.

    Article  Google Scholar 

  30. Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont. 2017;30:474–84.

    Article  Google Scholar 

  31. Ioannidis A, Bomze D, Hämmerle CHF, Hüsler J, Birrer O, Mühlemann S. Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars. Dent Mater. 2020;36:e109–16.

    Article  Google Scholar 

  32. Wang J, Shaw LL, Cameron TB. Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. J Am Ceram Soc. 2006;89:346–9.

    Article  Google Scholar 

  33. Peng E, Zhang D, Ding J. Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater. 2018;30:1802404.

    Article  Google Scholar 

  34. Silva NRFA, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont. 2011;20:93–6.

    Article  Google Scholar 

  35. Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method: a systematic review. J Prosthet Dent. 2019;122:270–4.

    Article  Google Scholar 

  36. Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up [Internet]. Int J Dent. Hindawi; 2016 [cited 2021 Jan 29]. p. e8590971. Available from: https://www.hindawi.com/journals/ijd/2016/8590971/.

  37. Osman RB, van der Veen AJ, Huiberts D, Wismeijer D, Alharbi N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography, and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed Mater. 2017;75:521–8.

    Article  Google Scholar 

  38. Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning, and functionalization for improved performance. Biomater Sci. 2018;6:1312–38.

    Article  Google Scholar 

  39. Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015;11:494–502.

    Article  Google Scholar 

  40. Schünemann FH, Galárraga-Vinueza ME, Magini R, Fredel M, Silva F, Souza JCM, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl. 2019;98:1294–305.

    Article  Google Scholar 

  41. Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng. 2017;3:1245–61.

    Article  Google Scholar 

  42. Kunrath MF, Lombardo EM. Drug delivery surfaces for oral implant applications: current view and perspectives. J Oral Maxillofac Surg. 2019;77:2370–1.

    Article  Google Scholar 

  43. Gupta S, Noumbissi S, Kunrath MF. Nano modified zirconia dental implants: advances and the frontiers for rapid osseointegration. Med Devices Sens. 2020;3:e10076.

    Article  Google Scholar 

  44. Lee W-T, Koak J-Y, Lim Y-J, Kim S-K, Kwon H-B, Kim M-J. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100B:1044–52.

    Article  Google Scholar 

  45. Arshad SR, Hashemi A, Oskui IZ. Does peek dental implant has a thermal advantage over zirconia or titanium implants? J Mech Med Biol. 2020;20:2050005.

    Article  Google Scholar 

  46. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dent J. 2017;5:35.

    Article  Google Scholar 

  47. Unkovskiy A, Wahl E, Zander AT, Huettig F, Spintzyk S. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health. 2019;19:46.

    Article  Google Scholar 

  48. Steinmassl P-A, Wiedemair V, Huck C, Klaunzer F, Steinmassl O, Grunert I, et al. Do CAD/CAM dentures really release less monomer than conventional dentures? Clin Oral Investig. 2017;21:1697–705.

    Article  Google Scholar 

  49. Lee S, Hong S-J, Paek J, Pae A, Kwon K-R, Noh K. Comparing the accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont. 2019;11:55–64.

    Article  Google Scholar 

  50. Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent. 2019;121:637–43.

    Article  Google Scholar 

  51. Scherer MD. Digital dental model production with high accuracy 3D printing. 17. https://www.additive-x.com/media/sector_resources/Digital-Dental-Model-Production_white-paper.pdf.

  52. Kaleli N, Ural Ç, Us YÖ. Evaluation of marginal discrepancy in metal frameworks fabricated by sintering-based computer-aided manufacturing methods. J Adv Prosthodont. 2020;12:124–30.

    Article  Google Scholar 

  53. Choi JJE, Uy CE, Plaksina P, Ramani RS, Ganjigatti R, Waddell JN. Bond strength of denture teeth to heat-cured, CAD/CAM, and 3D printed denture acrylics. J Prosthodont. 2020;29:415–21.

    Article  Google Scholar 

  54. Emami E, de Souza RF, Kabawat M, Feine JS. The impact of edentulism on oral and general health. Int J Dent [Internet]. 2013 [cited 2021 Jan 14]; 2013. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664508/.

  55. Neumeier TT, Neumeier H. Digital immediate dentures treatment: a clinical report of two patients. J Prosthet Dent. 2016;116:314–9.

    Article  Google Scholar 

  56. Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020;29:524–8.

    Article  Google Scholar 

  57. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115:760–7.

    Article  Google Scholar 

  58. Jockusch J, Özcan M. Additive manufacturing of dental polymers: an overview on processes, materials, and applications. Dent Mater J. 2020;2020:2019–123.

    Google Scholar 

  59. Chen S-G, Yang J, Jia Y-G, Lu B, Ren L. TiO2 and PEEK reinforced 3D printing PMMA composite resin for dental denture base applications. Nanomaterials. 2019;9:1049.

    Article  Google Scholar 

  60. Ackerman JL, Proffit WR, Sarver DM. The emerging soft tissue paradigm in orthodontic diagnosis and treatment planning. Clin Orthod Res. 1999;2:49–52.

    Article  Google Scholar 

  61. Sarver DM, Ackerman JL. About face—the re-emerging soft tissue paradigm. Am J Orthod Dentofac Orthop. 2000;117:575–6.

    Article  Google Scholar 

  62. Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofac Orthop. 2009;135:276–7.

    Article  Google Scholar 

  63. Ellakany P, Al-Harbi F, El Tantawi M, Mohsen C. Evaluation of the accuracy of digital and 3D-printed casts compared with conventional stone casts. J Prosthet Dent. 2022;127(3):438–44.

    Article  Google Scholar 

  64. Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am J Orthod Dentofac Orthop. 2020;157:422–8.

    Article  Google Scholar 

  65. Brown GB, Currier GF, Kadioglu O, Kierl JP. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am J Orthod Dentofac Orthop. 2018;154:733–9.

    Article  Google Scholar 

  66. Hazeveld A, Huddleston Slater JJR, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145:108–15.

    Article  Google Scholar 

  67. Murugesan K, Anandapandian PA, Sharma SK, Vasantha Kumar M. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J Indian Prosthodont Soc. 2012;12:16–20.

    Article  Google Scholar 

  68. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofac Orthop. 2019;156:694–701.

    Article  Google Scholar 

  69. Ahamed SF, Kumar SM, Kumar, ASA K, Dharshini KI. Cytotoxic evaluation of directly 3D printed aligners and Invisalign. Eur J Mol Clin Med. 2020;7:1129–40.

    Google Scholar 

  70. Montgomery SM, Kuang X, Armstrong CD, Qi HJ. Recent advances in additive manufacturing of active mechanical metamaterials. Curr Opin Solid State Mater Sci. 2020;24:100869.

    Article  Google Scholar 

  71. Batra P, Gribel BF, Abhinav BA, Arora A, Raghavan S. OrthoAligner “NAM”: a case series of presurgical infant orthopedics (PSIO) using clear aligners. Cleft Palate Craniofac J. 2020;57:646–55.

    Article  Google Scholar 

  72. Bous RM, Kochenour N, Valiathan M. A novel method for fabricating nasoalveolar molding appliances for infants with cleft lip and palate using 3-dimensional workflow and clear aligners. Am J Orthod Dentofac Orthop. 2020;158:452–8.

    Article  Google Scholar 

  73. Schiebl J, Bauer FX, Grill F, Loeffelbein DJ. RapidNAM: algorithm for the semi-automated generation of nasoalveolar molding device designs for the presurgical treatment of bilateral cleft lip and palate. IEEE Trans Biomed Eng. 2020;67:1263–71.

    Article  Google Scholar 

  74. Comparative study between the overall production time of digitally versus conventionally produced indirect orthodontic bonding trays [Internet]. [cited 2021 Feb 10]. Available from: http://www.turkjorthod.org/en/comparative-study-between-the-overall-production-time-of-digitally-versus-conventionally-produced-indirect-orthodontic-bonding-trays-131064.

  75. Edwards SP. Computer-assisted craniomaxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22:117–34.

    Article  Google Scholar 

  76. Lonic D, Pai BC-J, Yamaguchi K, Chortrakarnkij P, Lin H-H, Lo L-J. Computer-assisted orthognathic surgery for patients with cleft lip/palate: from traditional planning to three-dimensional surgical simulation. PLoS One. 2016;11:e0152014.

    Article  Google Scholar 

  77. De Riu G, Meloni SM, Baj A, Corda A, Soma D, Tullio A. Computer-assisted orthognathic surgery for correction of facial asymmetry: results of a randomized controlled clinical trial. Br J Oral Maxillofac Surg. 2014;52:251–7.

    Article  Google Scholar 

  78. Van Hemelen G, Van Genechten M, Renier L, Desmedt M, Verbruggen E, Nadjmi N. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction. J Cranio Maxillofac Surg. 2015;43:918–25.

    Article  Google Scholar 

  79. Shirota T, Shiogama S, Watanabe H, Kurihara Y, Yamaguchi T, Maki K, et al. Three-dimensional virtual planning and intraoperative navigation for two-jaw orthognathic surgery. J Oral Maxillofac Surg Med Pathol. 2016;28:530–4.

    Article  Google Scholar 

  80. Pietruski P, Majak M, Swiatek-Najwer E, Popek M, Szram D, Zuk M, et al. Accuracy of experimental mandibular osteotomy using the image-guided sagittal saw. Int J Oral Maxillofac Surg. 2016;45:793–800.

    Article  Google Scholar 

  81. Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46:67–71.

    Article  Google Scholar 

  82. Ying B, Ye N, Jiang Y, Liu Y, Hu J, Zhu S. Correction of facial asymmetry associated with vertical maxillary excess and mandibular prognathism by combined orthognathic surgery and guiding templates and splints fabricated by rapid prototyping technique. Int J Oral Maxillofac Surg. 2015;44:1330–6.

    Article  Google Scholar 

  83. Comparison of three different types of splints and templates for maxilla repositioning in bimaxillary orthognathic surgery: a randomized controlled trial. Int J Oral Maxillofac Surg [Internet]. 2020 [cited 2021 Feb 17]; Available from: https://www.sciencedirect.com/science/article/pii/S0901502720303751.

  84. Karanxha L, Rossi D, Hamanaka R, Giannì AB, Baj A, Moon W, et al. Accuracy of splint vs splintless technique for virtually planned orthognathic surgery: a voxel-based three-dimensional analysis. J Cranio Maxillofac Surg. 2021;49:1–8.

    Article  Google Scholar 

  85. Kang S-H, Lee J-W, Lim S-H, Kim Y-H, Kim M-K. Validation of mandibular genioplasty using a stereolithographic surgical guide: in vitro comparison with a manual measurement method based on preoperative surgical simulation. J Oral Maxillofac Surg. 2014;72:2032–42.

    Article  Google Scholar 

  86. Arcas A, Vendrell G, Cuesta F, Bermejo L. Advantages of performing mentoplasties with customized guides and plates generated with 3D planning and printing. Results from a series of 23 cases. J Cranio Maxillofac Surg. 2018;46:2088–95.

    Article  Google Scholar 

  87. Kim J-W, Kim J-C, Jeong C-G, Cheon K-J, Cho S-W, Park I-Y, et al. The accuracy and stability of the maxillary position after orthognathic surgery using a novel computer-aided surgical simulation system. BMC Oral Health. 2019;19:1–13.

    Article  Google Scholar 

  88. Philippe B. Accuracy of the position of cutting and drilling guide for sagittal split guided surgery: a proof of concept study. Br J Oral Maxillofac Surg. 2020;58:940–6.

    Article  Google Scholar 

  89. Volpe Y, Furferi R, Governi L, Uccheddu F, Carfagni M, Mussa F, et al. Surgery of complex craniofacial defects: a single-step AM-based methodology. Comput Methods Prog Biomed. 2018;165:225–33.

    Article  Google Scholar 

  90. Rückschloß T, Ristow O, Müller M, Kühle R, Zingler S, Engel M, et al. Accuracy of patient-specific implants and additive-manufactured surgical splints in orthognathic surgery—a three-dimensional retrospective study. J Cranio Maxillofac Surg. 2019;47:847–53.

    Article  Google Scholar 

  91. Melville JC, Manis CS, Shum JW, Alsuwied D. Single-unit 3D-printed titanium reconstruction plate for maxillary reconstruction: the evolution of surgical reconstruction for maxillary defects-a case report and review of current techniques. J Oral Maxillofac Surg. 2019;77:874.e1–874.e13.

    Article  Google Scholar 

  92. Goodson AM, Kittur MA, Evans PL, Williams EM. Patient-specific, printed titanium implants for reconstruction of mandibular continuity defects: a systematic review of the evidence. J Craniomaxillofac Surg. 2019;47:968–76.

    Article  Google Scholar 

  93. Qassemyar Q, Assouly N, Temam S, Kolb F. Use of a three-dimensional custom-made porous titanium prosthesis for mandibular body reconstruction. Int J Oral Maxillofac Surg. 2017;46:1248–51.

    Article  Google Scholar 

  94. Twenty-year follow-up study on a patient-fitted temporomandibular joint prosthesis: the Techmedica/TMJ concepts device. J Oral Maxillofac Surg. 2015;73:952–60.

    Google Scholar 

  95. Our Process – TMJ Concepts [Internet]. [cited 2021 Feb 19]. Available from: https://tmjconcepts.com/surgeons-office-staff/our-process/.

  96. Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: from implant design to implantation. J Mech Behav Biomed Mater. 2017;69:404–11.

    Article  Google Scholar 

  97. Williams LR, Fan KF, Bentley RP. Custom-made titanium cranioplasty: early and late complications of 151 cranioplasties and review of the literature. Int J Oral Maxillofac Surg. 2015;44:599–608.

    Article  Google Scholar 

  98. Park E-K, Lim J-Y, Yun I-S, Kim J-S, Woo S-H, Kim D-S, et al. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg. 2016;27:943–9.

    Article  Google Scholar 

  99. Abbate V, Iaconetta G, Califano L, Pansini A, Bonavolontà P, Romano A, et al. Self-made rapid prototyping technique for orbital floor reconstruction: showcases for technical description. J Craniofac Surg. 2019;30:2106–10.

    Article  Google Scholar 

  100. Bachelet J-T, Cordier G, Porcheray M, Bourlet J, Gleizal A, Foletti J-M. Orbital reconstruction by patient-specific implant printed in porous titanium: a retrospective case series of 12 patients. J Oral Maxillofac Surg. 2018;76:2161–7.

    Article  Google Scholar 

  101. Louvrier A, Marty P, Barrabé A, Euvrard E, Chatelain B, Weber E, et al. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofac Surg. 2017;118:206–12.

    Article  Google Scholar 

  102. Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, et al. Stem cell-friendly scaffold biomaterials: applications for bone tissue engineering and regenerative medicine. Front Bioeng Biotechnol [Internet]. 2020 [cited 2021 Feb 20];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767872/.

  103. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev. 2010;16:523–39.

    Article  Google Scholar 

  104. Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6:19468.

    Article  Google Scholar 

  105. Bobbert FSL, Lietaert K, Eftekhari AA, Pouran B, Ahmadi SM, Weinans H, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572–84.

    Article  Google Scholar 

  106. Höhne C, Schmitter M. 3D printed teeth for the preclinical education of dental students. J Dent Educ. 2019;83:1100–6.

    Article  Google Scholar 

  107. Boonsiriphant P, Al-Salihi Z, Holloway JA, Schneider GB. The use of 3D printed tooth preparation to assist in teaching and learning in preclinical fixed prosthodontics courses. J Prosthodont. 2019;28:e545–7.

    Article  Google Scholar 

  108. Aragón ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38:429–34.

    Article  Google Scholar 

  109. García-Gil I, Cortés-Bretón-Brinkmann J, Jiménez-García J, Peláez-Rico J, Suárez-García M-J. Precision and practical usefulness of intraoral scanners in implant dentistry: a systematic literature review. J Clin Exp Dent. 2020;12:e784.

    Article  Google Scholar 

  110. Is it cost-effective to add an intraoral scanner to an oral and maxillofacial surgery practice? J Oral Maxillofac Surg. 2019;77:1687–94.

    Google Scholar 

  111. Kamio T, Hayashi K, Onda T, Takaki T, Shibahara T, Yakushiji T, et al. Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields. 3D Print Med. 2018;4:1–7.

    Article  Google Scholar 

  112. Dadbakhsh S, Speirs M, Humbeeck JV, Kruth J-P. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull. 2016;41:765–74.

    Article  Google Scholar 

  113. Taheri Andani M, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater. 2017;68:224–31.

    Article  Google Scholar 

  114. Lu H, Yang C, Luo X, Ma H, Song B, Li Y, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A. 2019;763:138166.

    Article  Google Scholar 

  115. Shishkovskii IV, Yadroitsev IA, Smurov IY. Selective laser sintering/melting of nitinol–hydroxyapatite composite for medical applications. Powder Metall Met Ceram. 2011;50:275.

    Article  Google Scholar 

  116. Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, et al. Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces. 2019;11:8492–8.

    Article  Google Scholar 

  117. Guo J, Zhang R, Zhang L, Cao X. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett. 2018;7:442–6.

    Article  Google Scholar 

  118. Salmoria GV, Klauss P, Zepon KM, Kanis LA. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release. Int J Adv Manuf Technol. 2013;66:1113–8.

    Article  Google Scholar 

  119. Melocchi A. Expandable drug delivery system for gastric retention based on shape memory polymers development via 4D printing and extrusion. 2019.

    Google Scholar 

  120. Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, et al. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm. 2019;559:299–311.

    Article  Google Scholar 

  121. Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, Dourou A, Markopoulou C, Bouropoulos N, et al. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci. 2020;143:105176.

    Article  Google Scholar 

  122. Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines (Basel). 2017 [cited 2021 Apr 15];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190223/.

  123. Jiang Y, Wang Q. Highly-stretchable 3D-architected mechanical metamaterials. Sci Rep. 2016;6:34147.

    Article  Google Scholar 

  124. Jang D, Meza LR, Greer F, Greer JR. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat Mater. 2013;12:893–8.

    Article  Google Scholar 

  125. Bas O, De-Juan-Pardo EM, Chhaya MP, Wunner FM, Jeon JE, Klein TJ, et al. Enhancing structural integrity of hydrogels by using highly organized melt electrospun fiber constructs. Eur Polym J. 2015;72:451–63.

    Article  Google Scholar 

  126. Martinez-Marquez D, Delmar Y, Sun S, Stewart RA. Exploring macroporosity of additively manufactured titanium metamaterials for bone regeneration with quality by design: a systematic literature review. Materials. 2020;13:4794.

    Article  Google Scholar 

  127. Zhang H, Guo X, Wu J, Fang D, Zhang Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci Adv. 2018;4:eaar8535.

    Article  Google Scholar 

  128. Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15:413–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, D., Dhillon, H., Devi, L.B. (2022). Future of 3D Printing in Oral Health Sciences. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics