Skip to main content
Log in

The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The goals of this work were to fabricate specimens of different powder particle sizes and laser energy density of polycaprolactone and progesterone by selective laser sintering and evaluate the morphology by scanning electron microscopy and the mechanism of drug release in vitro. The results showed that the specimens maintained morphological uniformity, coalescence of particles, and interconnected pores distributed in the sintered structure. The drug release mechanism of all specimens studied followed a zero-order kinetics, and drug release rates were dependent on sintering degree and, consequently, on matrix erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan C, Yang J, Shi Y (2010) Selective laser sintering of polyamide 12/potassium titanium whisker composites. J Appl Polym Sci 117:2196–2204

    Article  Google Scholar 

  2. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652

    Article  Google Scholar 

  3. Salmoria GV, Leite JL, Ahrens CH, Lago A, Pires ATN (2007) Rapid manufacturing of PA/HDPE blend specimens by selective laser sintering: microstructural characterization. Polym Test 26:361–368

    Article  Google Scholar 

  4. Hur SM, Choi KH, Lee SH, Chang PK (2001) Determination of fabricating orientation and packing in SLS process. J Mater Process Technol 112:236–243

    Article  Google Scholar 

  5. Cooper KG (2005) Rapid prototyping technology: selection and application. Marcel Dekker, New York

    Google Scholar 

  6. Venuvinod PK, Ma W (2004) Rapid prototyping: laser-based and other technologies. Kluwer Academic, Norwell

    Google Scholar 

  7. Gibson I, Shi D (1997) Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J 3:129–136

    Article  Google Scholar 

  8. Beard MA, Ghita OR, Evans KE (2011) Monitoring the effects of selective laser sintering (SLS) build parameters on polyamide using near infrared spectroscopy DOI:dx.doi.org. J Appl Polym Sci 121:3153–3158

    Article  Google Scholar 

  9. Low KH, Leong KF, Chua CK, Du ZH, Cheach CM (2001) Characterization of SLS parts for drug delivery devices. Rapid Prototyp J 7:262–267

    Article  Google Scholar 

  10. Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H 216:369–383

    Article  Google Scholar 

  11. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827

    Article  Google Scholar 

  12. Leong KF, Wiria FE, Chua CK, Li SH (2007) Characterization of a poly epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng 17:147–157

    Google Scholar 

  13. Chang HI, Williamson MR, Perrie Y, Coombes AGA (2005) Precipitation casting of drug-loaded microporous PCL matrices: incorporation of progesterone by co-dissolution. J Control Release 106:263–272

    Article  Google Scholar 

  14. Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50:874–875

    Article  Google Scholar 

  15. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    Google Scholar 

  16. Siepman J, Siepman F (2008) Mathematical modelling of drug delivery. Int J Pharm 364:328–343

    Article  Google Scholar 

  17. Park JH, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    Article  Google Scholar 

  18. Tamada JA, Langer RP (1993) Erosion kinetics of hydrolytically degradable polymers. Natl Acad Sci USA 90:552–556

    Article  Google Scholar 

  19. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  Google Scholar 

  20. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451

    Article  Google Scholar 

  21. Lam CXF, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90:906–919

    Google Scholar 

  22. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976

    Article  Google Scholar 

  23. Chang HI, Willianson MR, Perrie Y, Coombes AGA (2005) Precipitation casting of drug-loaded microporous PCL matrices: incorporation of progesterone by co-dissolution. J Control Release 106:263–272

    Article  Google Scholar 

  24. Carmignan F, Bidone J, Lemos-Senna EMT (2008) Emprego dos Polihidroxialcanoatos em Sistemas de Liberação Controlada de Fármacos. Lat Am J Pharm 27:131–143

    Google Scholar 

  25. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose. Adv Drug Deliv Rev 48:139–157

    Article  Google Scholar 

  26. Li YX, Feng XD (1990) Biodegradable polymeric matrix for long-acting and zero-order release drug delivery systems. Makromol Chem 33:253–264

    Google Scholar 

  27. Lopes CM, Lobo JMS, Costa P (2005) Modified release of drug delivery systems: hydrophilic polymers. Rev Bras Cienc Farm 41:143–154

    Article  Google Scholar 

  28. Siepmann J, Göpferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229–247

    Article  Google Scholar 

  29. Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J (2006) How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm 314:198–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto Kanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmoria, G.V., Klauss, P., Zepon, K.M. et al. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release. Int J Adv Manuf Technol 66, 1113–1118 (2013). https://doi.org/10.1007/s00170-012-4393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4393-8

Keywords

Navigation