Skip to main content

3D Printing: Limitations, Safety, and Regulatory Considerations for Oral Health Science

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

In recent years, due to the rapid development of digital dentistry, 3D printing has gradually become an important production tool in dental laboratories and clinics. Professional printing centers and good manufacturing practice (GMP) production plants have been continuously put on the market, and materials with new properties and functions have been continuously entering the market. In the circumstance of high competition, 3D printers are getting more accurate, faster, and inexpensive. This trend brings advantages, but also some disadvantages and safety issues to clinical processes. How to regulate printed devices has always been a topic of common concern of regulatory agencies in various countries. In view of the above situation, this chapter organizes 3D printing-related topics as the object of discussion, including printing workflow management, risk, regulatory supervision, safety, and future trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gali S, Meleppura K, Nayak VM, Shaw M. A technique of designing a 3-dimensionally printed elastomeric impression mixing tip for reuse: a step toward eco-friendly dentistry. J Prosthet Dent. 2020; https://doi.org/10.1016/j.prosdent.2020.05.035.

  2. Kholgh Eshkalak S, Rezvani Ghomi E, Dai Y, Choudhury D, Ramakrishna S. The role of three-dimensional printing in healthcare and medicine. Mater Des. 2020;194:108940.

    Article  Google Scholar 

  3. Jayavelu J. 1 - Advancements in three-dimensional printing for the medical device industry. In: Timiri Shanmugam PS, Chokkalingam L, Bakthavachalam P, editors. Trends in development of medical devices. San Diego: Academic Press; 2020. p. 3–16.

    Chapter  Google Scholar 

  4. Nikoyan L, Patel R. Intraoral scanner, three-dimensional imaging, and three-dimensional printing in the dental office. Dent Clin N Am. 2020;64(2):365–78.

    Article  Google Scholar 

  5. Kuo R, Fang K, Su F. Interface oral health science 2016, vol. 2016. Singapore: Springer; 2017. p. 165–71.

    Book  Google Scholar 

  6. Turkyilmaz I, Wilkins GN. 3D printing in dentistry – exploring the new horizons. J Dent Sci. 2021;16:1037–8.

    Article  Google Scholar 

  7. Kim GD, Oh YT. A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc Inst Mech Eng Part B J Eng Manuf. 2008;222:201–15.

    Article  Google Scholar 

  8. Jani G, Johnson A, Marques J, Franco A. Three-dimensional (3D) printing in forensic science—an emerging technology in India. Ann 3D Print Med. 2021;1:100006.

    Article  Google Scholar 

  9. Katkar RA, Taft RM, Grant GT. 3D volume rendering and 3D printing (additive manufacturing). Dent Clin N Am. 2018;62:393–402.

    Article  Google Scholar 

  10. Revilla-León M, Sadeghpour M, Özcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J Prosthodont. 2020;29:579–93.

    Article  Google Scholar 

  11. Tahayeri A, Morgan MC, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34:192–200.

    Article  Google Scholar 

  12. Formlabs. (04 May). [Online]. Available from: https://dental.formlabs.com/indications/crown-and-bridge-models/.

  13. DS. (04 May). [Online]. Available from: https://www.3dsystems.com/3d-printers/dmp-dental-100.

  14. Scotti CK, Velo MM d AC, Rizzante FAP, Nascimento TR d L, Mondelli RFL, Bombonatti JFS. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J Prosthet Dent. 2020;124:614.e1–5.

    Article  Google Scholar 

  15. Kenning KB, Risinger DC, English JD, Cozad BE, Harris LM, Ontiveros JC, Kasper FK. Evaluation of the dimensional accuracy of thermoformed appliances taken from 3D printed models with varied shell thicknesses: an in vitro study. Int Orthod. 2021;19:137–46.

    Article  Google Scholar 

  16. Kim SY, Shin YS, Jung HD, Hwang CJ, Baik HS, Cha JY. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofac Orthop. 2018;153:144–53.

    Article  Google Scholar 

  17. Park JM, Jeon J, Koak JY, Kim SK, Heo SJ. Dimensional accuracy and surface characteristics of 3D-printed dental casts. J Prosthet Dent. 2020; https://doi.org/10.1016/j.prosdent.2020.07.008.

  18. Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent. 2017;118:208–15.

    Article  Google Scholar 

  19. Homsy FR, Özcan M, Khoury M, Majzoub ZAK. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J Prosthet Dent. 2018;119:783–90.

    Article  Google Scholar 

  20. Lin CH, Lin YM, Lai YL, Lee SY. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J Prosthet Dent. 2020;123:349–54.

    Article  Google Scholar 

  21. Atieh MA, Ritter AV, Ko CC, Duqum I. Accuracy evaluation of intraoral optical impressions: a clinical study using a reference appliance. J Prosthet Dent. 2017;118:400–5.

    Article  Google Scholar 

  22. Ellakany P, Alharbi F, El Tantawi M, Mohsen C. Evaluation of the accuracy of digital and 3D-printed casts compared with conventional stone casts. J Prosthet Dent. 2020; https://doi.org/10.1016/j.prosdent.2020.08.039.

  23. Ishida Y, Miyasaka T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent Mater J. 2016;35:250–6.

    Article  Google Scholar 

  24. Raghunath N, Pandey PM. Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int J Mach Tools Manuf. 2007;47:985–95.

    Article  Google Scholar 

  25. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofac Orthop. 2019;156:694–701.

    Article  Google Scholar 

  26. Jindal P, Worcester F, Siena FL, Forbes C, Juneja M, Breedon P. Mechanical behaviour of 3D printed vs thermoformed clear dental aligner materials under non-linear compressive loading using FEM. J Mech Behav Biomed Mater. 2020;112:104045.

    Article  Google Scholar 

  27. US OP. Agile aligner delivery Orthodontic Practice US [Internet]. Orthodontic Practice US. [cited 2021 May 10]. Available from: https://orthopracticeus.com/agile-aligner-delivery/.

  28. Gu Y, Van Dessel J, Politis C, Sun Y. 3D printing and 3D printed scaffolds. In: Comput Oral Maxillofac Surg. Amsterdam: Elsevier; 2021. p. 183–200.

    Chapter  Google Scholar 

  29. Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C. 2021;124:112055.

    Article  Google Scholar 

  30. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94:153S–7S.

    Article  Google Scholar 

  31. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9. https://doi.org/10.1038/sj.bdj.2015.914. Erratum in: Br Dent J. 2016 Jan 22;220(2):86

    Article  Google Scholar 

  32. Keßler A, Dosch M, Reymus M, Folwaczny M. Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides. J Prosthet Dent. 2021; https://doi.org/10.1016/j.prosdent.2020.08.038.

  33. Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop. 2014;146:673–82.

    Article  Google Scholar 

  34. Heboyan AG. Marginal and internal fit of fixed prosthodontic constructions: a literature review. Int J Dent Res Rev. 2019; https://doi.org/10.28933/ijdrr-2019-06-1105.

  35. Jang Y, Sim JY, Park JK, Kim WC, Kim HY, Kim JH. Evaluation of the marginal and internal fit of a single crown fabricated based on a three dimensional printed model. J Adv Prosthodont. 2018;10:367–73.

    Article  Google Scholar 

  36. Campos RE, Maristela C. Marginal gap evaluation in non-cemented crown restorations. J Dent Oral Disord. 2020;6(4):1136.

    Google Scholar 

  37. Chaturvedi S, Alqahtani NM, Addas MK, Alfarsi MA. Marginal and internal fit of provisional crowns fabricated using 3D printing technology. Technol Health Care. 2020;28:635–42.

    Article  Google Scholar 

  38. Alharbi N, Alharbi S, Cuijpers VMJI, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res. 2018;62:218–26.

    Article  Google Scholar 

  39. https://www.dentistrytoday.com/news/industrynews/item/5143-occlusion-pioneer-dr-peter-dawson-1930%202019#:~:text=2019%20Dentistry%20Today,Dr.,diagnosing%20and%20treating%20temporomandibular%20disorders.

  40. Singh S, Prakash C, Singh R. 3D printing in biomedical engineering. New York: Springer; 2020. https://doi.org/10.1007/978-981-15-5424-7.

    Book  Google Scholar 

  41. Mak SL, Tang WF, Li CH, Wu MY, Lai CW. A study on the ways to solve hazardous chemical emission from 3D printing process. In: ISPCE-CN 2020 - IEEE Int Symp Prod Compliance Eng, vol. 2020; 2020. p. 1–5.

    Google Scholar 

  42. Rejeski D, Huang Y. An NSF workshop report; 2015.

    Google Scholar 

  43. Yoon HS, Lee JY, Kim HS, Kim MS, Kim ES, Shin YJ, Chu WS, Ahn SH. A comparison of energy consumption in bulk forming, subtractive, and additive processes: review and case study. Int J Precis Eng Manuf Green Technol. 2014;1:261–79.

    Article  Google Scholar 

  44. https://www.lboro.ac.uk/service/publicity/news-releases/2009/03_ATKINS.html.

  45. Zhang Q, Pardo M, Rudich Y, Kaplan-Ashiri I, Wong JPS, Davis AY, Black MS, Weber RJ. Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environ Sci Technol. 2019;53:12054–61.

    Article  Google Scholar 

  46. Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ. 2008;42:8113–38.

    Article  Google Scholar 

  47. Azimi P, Zhao D, Pouzet C, Crain NE, Stephens B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 2016;50:1260–8.

    Article  Google Scholar 

  48. Yi J, LeBouf RF, Duling MG, Nurkiewicz T, Chen BT, Schwegler-Berry D, Virji MA, Stefaniak AB. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol Environ Heal Part A Curr Issues. 2016;79:453–65.

    Article  Google Scholar 

  49. Gu J, Wensing M, Uhde E, Salthammer T. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ Int. 2019;123:476–85.

    Article  Google Scholar 

  50. Steinle P. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Environ Hyg. 2016;13:121–32.

    Article  Google Scholar 

  51. Zontek TL, Ogle BR, Jankovic JT, Hollenbeck SM. An exposure assessment of desktop 3D printing. J Chem Health Saf. 2017;24:15–25.

    Article  Google Scholar 

  52. Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air. 2017;27:398–408.

    Article  Google Scholar 

  53. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  Google Scholar 

  54. Anand SS, Philip BK, Mehendale HM. Volatile organic compounds. In: Encycl. Toxicol. 3rd ed. Amsterdam: Elsevier; 2014. p. 967–70.

    Chapter  Google Scholar 

  55. Rumchev K, Brown H, Spickett J. Volatile organic compounds: do they present a risk to our health? Rev Environ Health. 2007;22:39–55.

    Article  Google Scholar 

  56. Maroni M, Seifert B, Lindvall T. Indoor air quality, a comprehensive reference book. Amsterdam: Elsevier; 1995.

    Google Scholar 

  57. Mølhave L. Organic compounds as indicators of air pollution. Indoor Air. 2003;13:12–9.

    Article  Google Scholar 

  58. Mølhave L, Bach B, Pedersen OF. Human reactions to low concentrations of volatile organic compounds. Environ Int. 1986;12:167–75.

    Article  Google Scholar 

  59. Boeglin ML, Wessels D, Henshel D. An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environ Res. 2006;100:242–54.

    Article  Google Scholar 

  60. Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 2021;122:26–49.

    Article  Google Scholar 

  61. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117:10212–90.

    Article  Google Scholar 

  62. Shenoy A, Shenoy N. Dental ceramics: an update. J Conserv Dent. 2010;13:195.

    Article  Google Scholar 

  63. Prasad S, Kader NA, Sujatha G, Raj T, Patil S. 3D printing in dentistry. J 3D Print Med. 2018;2:89–91.

    Article  Google Scholar 

  64. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: a review. Dent Mater. 2019;35:825–46.

    Article  Google Scholar 

  65. Babu PJ, Alla RK, Alluri VR, Datla SR, Konakanchi A. Dental ceramics: Part I – An overview of composition, structure and properties. Am J Mater Eng Technol. 2015;3:13–8.

    Google Scholar 

  66. Xing H, Zou B, Li S, Fu X. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int. 2017;43:16340–7.

    Article  Google Scholar 

  67. Milan Šušić University of Business Studies Banja Luka: the importance of new technologies and their impact on industrial development, service activities and unemployment.

    Google Scholar 

  68. https://en.wikipedia.org/wiki/ISO_10993.

  69. Ferraris S, Pan G, Cassinelli C, Mazzucco L, Verne E, Spriano S. Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications. Biomed Mater. 7(5):054102.

    Google Scholar 

  70. MacDonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, Wlodkowic D, Cooper JM. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16:291–7.

    Article  Google Scholar 

  71. Sirjani E, Cragg PJ, Dymond MK. Glass transition temperatures, melting temperatures, water contact angles and dimensional precision of simple fused deposition model 3D prints and 3D printed channels constructed from a range of commercially available filaments. Chem Data Collect. 2019;22:100244.

    Article  Google Scholar 

  72. https://en.wikipedia.org/wiki/Pinch_point_hazard.

  73. Zhang Q, Wong JPS, Davis AY, Black MS, Weber RJ. Characterization of particle emissions from consumer fused deposition modeling 3D printers. Aerosol Sci Technol. 2017;51:1275–86.

    Article  Google Scholar 

  74. Väisänen AJK, Hyttinen M, Ylönen S, Alonen L. Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes. J Occup Environ Hyg. 2019;16(3):258–71.

    Article  Google Scholar 

  75. Wood RA, Burchett MD, Alquezar R, Orwell RL, Tarran J, Torpy F. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut. 2006;175:163–80.

    Article  Google Scholar 

  76. Wojtyła S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg. 2017;14(6):D80–5. https://doi.org/10.1080/15459624.2017.1285489.

    Article  Google Scholar 

  77. https://en.wikipedia.org/wiki/HEPA.

  78. https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device.

  79. https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices.

  80. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm?ID=1304.

  81. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm?ID=1096.

  82. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm?ID=1097.

  83. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=1095.

  84. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=OBR.

  85. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=NXC.

  86. Medicine and health care products, regulatory and agency: Guidance on legislation Borderlines with medical devices and other products in Great Britain. In relation to the UK Medical Device Regulations 2002 (SI 2002 No 618, as amended). September 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1023171/Rev_Borderlines_with_medical_devices_and_other_products-_V1_4_80_.pdf.

  87. The European Union Medical Device Regulation of 2017. https://eumdr.com/.

  88. Federal Register of July 21, 1978 (43 FR 31 508). https://www.federalregister.gov/documents/1996/10/07/96-25720/medical-devices-current-good-manufacturing-practice-cgmp-final-rule-quality-system-regulation.

  89. Standard Terminology for Additive Manufacturing Technologies. https://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf.

  90. https://legislative.gov.in/sites/default/files/A1940-23.pdf.

  91. Ford S, Minshall T. Invited review article: where and how 3D printing is used in teaching and education. Addit Manuf. 2019;25:131–50.

    Google Scholar 

  92. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172. https://doi.org/10.3389/fbioe.2018.00172.

    Article  Google Scholar 

  93. Garcia J, Yang ZL, Mongrain R, Leask RL, Lachapelle K. 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn. 2018;4:27–40.

    Article  Google Scholar 

  94. Kröger E, Dekiff M, Dirksen D. 3D printed simulation models based on real patient situations for hands-on practice. Eur J Dent Educ. 2017;21(4):e119–25. https://doi.org/10.1111/eje.12229. Epub 2016 Jul 29

    Article  Google Scholar 

  95. Höhne C, Schwarzbauer R, Schmitter M. 3D printed teeth with enamel and dentin layer for educating dental students in crown preparation. J Dent Educ. 2019;83(12):1457–63. https://doi.org/10.21815/jde.019.146.

    Article  Google Scholar 

  96. https://www.aegisdentalnetwork.com/id/2016/01/3d-printing-for-education-and-training-in-endodontics.

  97. Reymus M, Fotiadou C, Kessler A, Heck K, Hickel R, Diegritz C. 3D printed replicas for endodontic education. Int Endod J. 2019;52:123–30.

    Article  Google Scholar 

  98. Georgantza A, Loomer P, Suzuki T, Froum S, Cho S.-C, Yu Y. The use of 3D printing in dental implant education. Dent Learn. 2016.

    Google Scholar 

  99. Suzuki T. The use of 3D printing in dental implant education. Dent Learn. 2016. pp. 1–12.

    Google Scholar 

  100. Pennefather P, Krebs C. Exploring the role of xR in visualisations for use in medical education. Adv Exp Med Biol. 2019;1171:15–23. https://doi.org/10.1007/978-3-030-24281-7_2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuo, RF., Lin, YS., Yang, TH., Nguyen, AT. (2022). 3D Printing: Limitations, Safety, and Regulatory Considerations for Oral Health Science. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics