Skip to main content

Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging of the Human Auditory System

  • Chapter
  • First Online:
EEG - fMRI

Abstract

The combination of recordings of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has become a widely accepted tool in human neuroscience to combine the high spatial resolution of fMRI recordings with the precise temporal resolution of EEG recordings. Recording EEG in a running MRI scanner is technically challenging and involves the correction of multiple additional artifacts. This problem seems solved by user-friendly solutions for the correction of MRI-related artifacts in EEG data which are now available. The scanner noise, however, still poses a major unsolved problem, since it can obviously interfere with auditory experiments. We discuss the technical advances in the combination of EEG with fMRI as well as some recent experiments using the combined techniques in the auditory domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  Google Scholar 

  • Amaro E, Williams SCR, Shergill SS et al (2002) Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects. J Magn Reson Imaging 16:497–510

    Article  Google Scholar 

  • Angenstein N, Stadler J, Brechmann A (2016) Auditory intensity processing: effect of MRI background noise. Hear Res 333:87–92

    Article  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Van Kylen J et al (1998) Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 39:410–416

    Article  CAS  Google Scholar 

  • Baumgart F, Kautisch T, Tempelmann C et al (1998) Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners. Med Phys 25:2068–2070

    Article  CAS  Google Scholar 

  • Beagley HA, Knight JJ (1967) Changes in auditory evoked response with intensity. J Laryngol Otol 81:861–873

    Article  CAS  Google Scholar 

  • Behler O, Uppenkamp S (2016) The representation of level and loudness in the central auditory system for unilateral stimulation. Neuroimage 139:176–188

    Article  Google Scholar 

  • Belin P, Zatorre RJ, Hoge R et al (1999) Event-related fMRI of the auditory cortex. Neuroimage 10:417–429

    Article  CAS  Google Scholar 

  • Bénar CG, Schön D, Grimault S et al (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613

    Article  Google Scholar 

  • Bonmassar G, Purdon PL, Jääskeläinen IP et al (2002) Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI. Neuroimage 16:1127–1141

    Article  Google Scholar 

  • Brechmann A, Baumgart F, Scheich H (2002) Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 87:423–433

    Article  Google Scholar 

  • Brechmann A, Gaschler-Markefski B, Sohr M et al (2007) Working memory-specific activity in auditory cortex: potential correlates of sequential processing and maintenance. Cereb Cortex 17:2544–2552

    Article  Google Scholar 

  • Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542–1559

    Article  CAS  Google Scholar 

  • Calhoun V, Adali T, Pearlson G, Kiehl K (2005) Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential DATA. IEEE Work Mach Learn Signal Process 30:239–244

    Google Scholar 

  • Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:163–172

    Article  Google Scholar 

  • Cho ZH, Chung SC, Lim DW, Wong EK (1998) Effects of the acoustic noise of the gradient systems on fMRI: a study on auditory, motor, and visual cortices. Magn Reson Med 39:331–336

    Article  CAS  Google Scholar 

  • Coffey EBJ, Musacchia G, Zatorre RJ (2017) Cortical correlates of the auditory frequency-following and onset responses: EEG and fMRI evidence. J Neurosci 37:830–838

    Article  CAS  Google Scholar 

  • Counter SA, Olofsson A, Borg E et al (2000) Analysis of magnetic resonance imaging acoustic noise generated by a 4.7 T experimental system. Acta Otolaryngol 120:739–743

    Article  CAS  Google Scholar 

  • Crottaz-Herbette S, Menon V (2006) Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci 18:766–780

    Article  CAS  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10:558–563

    Article  Google Scholar 

  • Debener S, Strobel A, Sorger B et al (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage 34:587–597

    Article  Google Scholar 

  • Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67:189–199

    Article  Google Scholar 

  • Doeller CF, Opitz B, Mecklinger A et al (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. Neuroimage 20:1270–1282

    Article  Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97

    Article  CAS  Google Scholar 

  • Eichele T, Specht K, Moosmann M et al (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci 102:17798–17803

    Article  CAS  Google Scholar 

  • Ellingson ML, Liebenthal E, Spanaki MV et al (2004) Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI. Neuroimage 22:1534–1542

    Article  CAS  Google Scholar 

  • Felblinger J, Slotboom J, Kreis R et al (1999) Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 41:715–721

    Article  CAS  Google Scholar 

  • Fujimaki N, Hayakawa T, Nielsen M et al (2002) An fMRI-constrained MEG source analysis with procedures for dividing and grouping activation. Neuroimage 17:324–343

    Article  Google Scholar 

  • Gaab N, Gaser C, Zaehle T et al (2003) Functional anatomy of pitch memory - an fMRI study with sparse temporal sampling. Neuroimage 19:1417–1426

    Article  Google Scholar 

  • Gaab N, Gabrieli JDE, Glover GH (2007) Assessing the influence of scanner background noise on auditory processing. I. an fMRI study comparing three experimental designs with varying degrees of scanner noise. Hum Brain Mapp 28:703–720

    Article  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA et al (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223

    Article  CAS  Google Scholar 

  • Hall DA, Summerfield AQ, Gonçalves MS et al (2000) Time-course of the auditory BOLD response to scanner noise. Magn Reson Med 43:601–606

    Article  CAS  Google Scholar 

  • Hall DA, Chambers J, Akeroyd MA et al (2009) Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J Acoust Soc Am 125:347–359

    Article  Google Scholar 

  • Hedeen RA, Edelstein WA (1997) Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 37:7–10

    Article  CAS  Google Scholar 

  • Hennel F, Girard F, Loenneker T (1999) “Silent” MRI with soft gradient pulses. Magn Reson Med 42:6–10

    Article  CAS  Google Scholar 

  • Herrmann CS, Debener S (2008) Simultaneous recording of EEG and BOLD responses: a historical perspective. Int J Psychophysiol 67:161–168

    Article  Google Scholar 

  • Herrmann CS, Oertel U, Wang Y et al (2000) Noise affects auditory and linguistic processing differently. Neuroreport 11:227–230

    Article  CAS  Google Scholar 

  • Horovitz SG, Skudlarski P, Gore JC (2002) Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson Imaging 20:319–325

    Article  Google Scholar 

  • Huster RJ, Debener S, Eichele T, Herrmann CS (2012) Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci 32:6053–6060

    Article  CAS  Google Scholar 

  • Langers DRM, Sanchez-Panchuelo RM, Francis ST et al (2014) Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol. Neuroimage 100:663–675

    Article  Google Scholar 

  • Le TH, Patel S, Roberts TP (2001) Functional MRI of human auditory cortex using block and event-related designs. Magn Reson Med 45:254–260

    Article  CAS  Google Scholar 

  • Li M, Rudd B, Lim TC, Lee J-H (2011) In situ active control of noise in a 4 T MRI scanner. J Magn Reson Imaging 34:662–669

    Article  Google Scholar 

  • Li Q, Liu G, Wei D et al (2017) The spatiotemporal pattern of pure tone processing: a single-trial EEG-fMRI study. Neuroimage 156:1–8

    Article  Google Scholar 

  • Liebenthal E, Ellingson ML, Spanaki MV et al (2003) Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Neuroimage 19:1395–1404

    Article  Google Scholar 

  • Liem F, Lutz K, Luechinger R et al (2012) Reducing the interval between volume acquisitions improves “sparse” scanning protocols in event-related auditory fMRI. Brain Topogr 25:182–193

    Article  Google Scholar 

  • Linden DEJ (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9:815–823

    Article  CAS  Google Scholar 

  • Loenneker T, Hennel F, Ludwig U, Hennig J (2001) Silent BOLD imaging. MAGMA 13:76–81

    Article  CAS  Google Scholar 

  • Madio DP, Lowe IJ (1995) Ultra-fast imaging using low flip angles and fids. Magn Reson Med 34:525–529

    Article  CAS  Google Scholar 

  • Mansfield P, Glover PM, Beaumont J (1998) Sound generation in gradient coil structures for MRI. Magn Reson Med 39:539–550

    Article  CAS  Google Scholar 

  • McJury M, Shellock FG (2000) Auditory noise associated with MR procedures: a review. J Magn Reson Imaging 12:37–45

    Article  CAS  Google Scholar 

  • Menon V, Crottaz-Herbette S (2005) Combined EEG and fMRI studies of human brain function. Int Rev Neurobiol 66:291–321

    Article  CAS  Google Scholar 

  • Micheyl C, Carlyon RP, Gutschalk A et al (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116–131

    Article  Google Scholar 

  • Moelker A, Pattynama PMT (2003) Acoustic noise concerns in functional magnetic resonance imaging. Hum Brain Mapp 20:123–141

    Article  Google Scholar 

  • Moelker A, Wielopolski PA, Pattynama PMT (2003) Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels. MAGMA 16:52–55

    Article  Google Scholar 

  • Mulert C, Jäger L, Schmitt R et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  Google Scholar 

  • Mulert C, Jäger L, Propp S et al (2005) Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI. Neuroimage 28:49–58

    Article  Google Scholar 

  • Müller BW, Stude P, Nebel K et al (2003) Sparse imaging of the auditory oddball task with functional MRI. Neuroreport 14:1597–1601

    Article  Google Scholar 

  • Mullinger K, Debener S, Coxon R, Bowtell R (2008) Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla. Int J Psychophysiol 67:178–188

    Article  Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD et al (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28:720–737

    Article  CAS  Google Scholar 

  • Nierhaus T, Gundlach C, Goltz D et al (2013) Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI. Neuroimage 74:70–76

    Article  Google Scholar 

  • Norman-Haignere S, McDermott JH (2016) Distortion products in auditory fMRI research: measurements and solutions. Neuroimage 129:401–413

    Article  Google Scholar 

  • Novitski N, Alho K, Korzyukov O et al (2001) Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials. Neuroimage 14:244–251

    Article  CAS  Google Scholar 

  • Novitski N, Anourova I, Martinkauppi S et al (2003) Effects of noise from functional magnetic resonance imaging on auditory event-related potentials in working memory task. Neuroimage 20:1320–1328

    Article  Google Scholar 

  • Novitski N, Maess B, Tervaniemi M (2006) Frequency specific impairment of automatic pitch change detection by fMRI acoustic noise: an MEG study. J Neurosci Methods 155:149–159

    Article  CAS  Google Scholar 

  • Opitz B, Mecklinger A, Friederici AD, Von Cramon DY (1999) The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb Cortex 9:379–391

    Article  CAS  Google Scholar 

  • Otzenberger H, Gounot D, Foucher JR (2005) P300 recordings during event-related fMRI: a feasibility study. Cogn Brain Res 23:306–315

    Article  CAS  Google Scholar 

  • Palmer AR, Bullock DC, Chambers JD (1998) A high-output, high-quality sound system for use in auditory. Neuroimage 7:S359

    Article  Google Scholar 

  • Palmer AR, Chambers J, Hall DA (2006) New fMRI methods for hearing and speech. Acoust Sci Technol 27:125–133

    Article  Google Scholar 

  • Peelle JE (2014) Methodological challenges and solutions in auditory functional magnetic resonance imaging. Front Neurosci 8:1–13

    Article  Google Scholar 

  • Peelle JE, Eason RJ, Schmitter S et al (2010) Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. Neuroimage 52:1410–1419

    Article  Google Scholar 

  • Perrachione TK, Ghosh SS (2013) Optimized design and analysis of sparse-sampling fMRI experiments. Front Neurosci 7:1–18

    Article  Google Scholar 

  • Price DL, De Wilde JP, Papadaki AM et al (2001) Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging 13:288–293

    Article  CAS  Google Scholar 

  • Rapin I, Schimmel H, Tourk LM et al (1966) Evoked responses to clicks and tones of varying intensity in waking adults. Electroencephalogr Clin Neurophysiol 21:335–344

    Article  CAS  Google Scholar 

  • Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838

    Article  Google Scholar 

  • Ritter P, Becker R, Graefe C, Villringer A (2007) Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI. Magn Reson Imaging 25:923–932

    Article  Google Scholar 

  • Rothlübbers S, Relvas V, Leal A et al (2014) Characterisation and reduction of the EEG artefact caused by the helium cooling pump in the MR environment: validation in epilepsy patient data. Brain Topogr 28:208–220

    Article  Google Scholar 

  • Rusiniak M, Lewandowska M, Wolak T et al (2013) A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP-fMRI study. MAGMA 26:511–526

    Article  Google Scholar 

  • Sabri M, Liebenthal E, Waldron EJ et al (2006) Attentional modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI study. J Cogn Neurosci 18:689–700

    Article  CAS  Google Scholar 

  • Scarff CJ, Reynolds A, Goodyear BG et al (2004) Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials. Neuroimage 23:1129–1142

    Article  Google Scholar 

  • Schmitter S, Diesch E, Amann M et al (2008) Silent echo-planar imaging for auditory FMRI. MAGMA 21:317–325

    Article  CAS  Google Scholar 

  • Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I (2006) Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. Neuroimage 29:774–782

    Article  Google Scholar 

  • Scott SK, McGettigan C (2013) The neural processing of masked speech. Hear Res 303:58–66

    Article  Google Scholar 

  • Shah NJ, Jäncke L, Grosse-Ruyken ML, Müller-Gärtner HW (1999) Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination. J Magn Reson Imaging 9:19–25

    Article  CAS  Google Scholar 

  • Sijbersa J, Van Audekerke J, Verhoye M et al (2000) Reduction of ECG and gradient related artifacts in simultaneously recorded human EEG/MRI data. Magn Reson Imaging 18:881–886

    Article  CAS  Google Scholar 

  • Solana AB, Menini A, Sacolick LI et al (2016) Quiet and distortion-free, whole brain BOLD fMRI using T2-prepared RUFIS. Magn Reson Med 75:1402–1412

    Article  Google Scholar 

  • Strobel A, Debener S, Sorger B et al (2008) Novelty and target processing during an auditory novelty oddball: a simultaneous event-related potential and functional magnetic resonance imaging study. Neuroimage 40:869–883

    Article  Google Scholar 

  • Tae WS, Yakunina N, Kim TS et al (2014) Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging. Neuroradiology 56:597–605

    Article  Google Scholar 

  • Talavage TM, Hall DA (2012) How challenges in auditory fMRI led to general advancements for the field. Neuroimage 62:641–647

    Article  Google Scholar 

  • Tanaka H, Fujita N, Watanabe Y et al (2000) Effects of stimulus rate on the auditory cortex using fMRI with “sparse” temporal sampling. Neuroreport 11:2045–2049

    Article  CAS  Google Scholar 

  • Thaerig S, Behne N, Schadow J et al (2008) Sound level dependence of auditory evoked potentials: simultaneous EEG recording and low-noise fMRI. Int J Psychophysiol 67:235–241

    Article  Google Scholar 

  • van der Meer JN, Pampel A, Van Someren EJW et al (2016) Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-a validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage 125:880–894

    Article  Google Scholar 

  • Vanderperren K, De Vos M, Ramautar JR et al (2010) Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage 50:920–934

    Article  Google Scholar 

  • Warbrick T, Bagshaw AP (2008) Scanning strategies for simultaneous EEG-fMRI evoked potential studies at 3 T. Int J Psychophysiol 67:169–177

    Article  Google Scholar 

  • Yang Y, Engelien A, Engelien W et al (2000) A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise. Magn Reson Med 43:185–190

    Article  CAS  Google Scholar 

  • Zaehle T, Schmidt CF, Meyer M et al (2007) Comparison of “silent” clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks. Neuroimage 37:1195–1204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph S. Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vosskuhl, J., Herrmann, C.S., Brechmann, A., Scheich, H. (2022). Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging of the Human Auditory System. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics